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Abstract

This paper characterizes the conditions under which the observed beliefs of a group of
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riors is uniformly absolutely continuous with respect to the prior. Furthermore, the paper
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1 Introduction

Following the treatise of Savage (1972), the Bayesian theory of probability has become the
dominant paradigm in themodeling of decision-making under uncertainty. This paradigm’s
dominance in economics is not unwarranted. It allows one to assign probabilities to unique
or rare events. It has an elegant foundation in the study of rational choice under uncertainty.
And it is appealing from a normative perspective—as Epstein and Le Breton (1993) proclaim,
“dynamically consistent beliefs must be Bayesian.” What is less clear is whether Bayesianism
is a good positive model of individual behavior. Settling this question requires characterizing
the testable predictions of Bayesian rationality.

This paper characterizes the empirical content of Bayesianism. It considers an analyst
who observes how the beliefs of a group of agents evolve. The analyst can perfectly observe
agents’ beliefs about an arbitrary state of the world but not how agents plan to update their
beliefs based on their signals. The analyst aims to determine if the observed belief sequence is
consistent with Bayesian updating given a joint subjective distribution for the state and signal.
The paper’s main result is that the analyst can rationalize his observation as consistent with
Bayesianism if and only if themean of the distribution of posteriors is uniformly absolutely
continuous with respect to the prior.

This result suggests that Bayesianismhas limited testable implications. In particular, when
the state space is finite, a belief sequence is consistent with Bayesian updating if and only
if the posterior mean is supported on a subset of the prior’s support. If the prior has full
support on a finite state space, then Bayesianism imposes no restrictions on the distribution
of posteriors. These results question the feasibility of testing Bayesianism in observational
data.

The paper’s characterization result is obtained under assumptions that make it easier for
the analyst to reject agents’ Bayesianism. The analyst is assumed to directly observe agents’
beliefs, instead of having to infer them from their actions. The analyst is free to elicit what
agents believe about an arbitrary state belonging to an arbitrary state space, and he can
observe those beliefs without any observation noise. I further assume that there is a large
number of ex ante identical agents, and agents observe i.i.d. signals. All these assumptions
make it easier to disprove agents’ Bayesianism; yet, any observation meeting the uniform
absolute continuity condition canbe rationalized. However, the assumptionsmake it possible
to show that this condition is both necessary and su�cient for consistency with Bayesianism.

This findingmay appear at odds with the existing results in the literature. Aumann and
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Maschler (1995) and Kamenica and Gentzkow (2009) argue that a belief sequence is Bayes’
plausible if and only if the posterior mean equals the prior. Shmaya and Yariv (2016) argue
that any belief sequence in which the prior is in the relative interior of the convex hull of
posteriors is consistent with agents’ use of Bayes’ rule. Both of these conditions are more
restrictive than the uniform absolute continuity condition derived in this paper. However,
those results are obtained under additional restrictions on what constitutes a reasonable
subjective belief for agents.

I prove two additional theorems to clarify the relationship between this paper’s characteri-
zation and those in the literature. The theorems adapt the existing results to themore general
setting of the current paper, thusmaking themdirectly comparable to the paper’s result. They
demonstrate that the earlier results characterize the empirical content of Bayesianism only
under additional assumptions on agents’ subjective beliefs. Aumann andMaschler (1995)
and Kamenica and Gentzkow (2009) do so by requiring agents to have correct beliefs about
the distribution of signals, whereas Shmaya and Yariv (2016) require the subjective belief to
have the same support as the true distribution.

Beyond the literature discussed above, this paper also contributes to the literature on
deviations from rational expectations. This literature can be roughly divided into two strands.
The first strand, such as Esponda and Pouzo (2016, 2021), maintains the assumption of
Bayesianupdatingbutadmits thepossibility that agentsholdmisspecifiedpriors.1 Thesecond
strand studies the implications of non-Bayesian updating rules such as representativeness
and availability heuristics (Tversky and Kahneman, 1974), confirmation bias (Rabin and
Schrag, 1999), and diagnostic expectations (Bordalo, Gennaioli, and Shleifer, 2018).2 This
paper’s main result clarifies the relationship between these two strands of the literature by
showing that almost anynon-Bayesianupdating rule is observationally equivalent toBayesian
updating given a misspecified prior about the distribution of signals. Bohren and Hauser
(2023) also study the question of when non-Bayesian updating rules can be represented as
misspecification. They extend Shmaya and Yariv (2016)’s analysis bymaking agents’ forecasts
of their future beliefs observable and deriving necessary and su�cient conditions for an
updating rule and a forecast to have amisspecified-model representation. In contrast, this
paper’s focus is characterizing the empirical content of Bayesianism absent information on
agents’ beliefs about how they will update their beliefs.

1See also Bohren (2016), Fudenberg, Romanyuk, and Strack (2017), Frick, Iijima, and Ishii (2020), Fudenberg, Lanzani, and Strack (2021),
and the references therein.

2See Epstein, Noor, and Sandroni (2010), Molavi, Tahbaz-Salehi, and Jadbabaie (2018), and Cripps (2019) for other examples of non-
Bayesian updating rules.
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2 Setup

This section introduces the environment and defines what it means for belief sequences to
be consistent with Bayesianism.

2.1 The Environment

I consider an analyst who examines whether a group of agents updates their beliefs about a
fixed state of the world using Bayes’ rule. The state is denoted by F and belongs to a separable
metric space - .

There is a large number of agents indexed by 7 2 � . In each of two periods B = 0, 1, the
analyst elicits what each agent believes about the state of the world. Agent 7 ’s time-B belief
about the value of F is a probability distribution, denoted by `7B 2 �(- ). I assume that the
analyst can perfectly observe `7B for all 7 and B = 0, 1.

Agents’ beliefs might evolve between the periods due to new information. I let A7 denote
the signal observed by agent 7 between the two periods and assume without loss of generality
that agents’ signals belong to the set ( ⌘ �(- ). Each agent 7 uses a measurable mapping
i7 : A7 7! `71 to form her posterior based on her realized signal A7 .3 4

I make several assumptions that all help the analyst conclude that agents must not be
Bayesian—these assumptions make the negative result of the paper evenmore striking. First,
agents are ex ante identical. In particular, `70 = `⇤0 for some `⇤0 2 �(- ) and all 7 2 � . Second,
agents’ signals are independent and identically distributed, with P 2 �(() denoting the true
distributionof signals given thefixedstateof theworld. Third, agents all use the samemapping
i = i7 to form their beliefs as a function of their signals. Fourth, the number of agents is large
enough that the empirical distribution of observed posteriors {`71}72� provides an arbitrarily
good approximation to the corresponding population distribution. Specifically, I assume
that the analyst can perfectly observe the population distribution of agents’ posterior beliefs,
denoted by � ⇤1 2 �(�(- )). Finally, the analyst is assumed to know everything described so
far. While these assumptions lead to a tight characterization result, they are not required for
the paper’s finding that Bayesianism only imposes a weak restriction on belief sequences.
Section 4.1 elaborates on this point.

The analyst’s question is whether he can interpret the pair (`⇤0,� ⇤1 ) as being consistent
with Bayesian updating given some subjective belief held by agents. The paper’s main result

3The term “posterior” here refers to agents’ beliefs at time one, regardless of whether those beliefs are derived from agents’ prior via
Bayes’ rule.

4The assumption that an agent’s posterior is a deterministic function of her signal is without loss of generality. Any random updating rule
is equivalent to a deterministic updating rule with a true distribution of signals P that does the randomization for agents.
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establishes that any pair (`⇤0,� ⇤1 ) that satisfies an absolute continuity condition can be ratio-
nalized as consistent with Bayes’ rule. This result is obtained despite the aforementioned
assumptions being biased towards rejecting Bayesianism.

2.2 Bayes Plausibility

Before presenting the main result, it is necessary to define what it means for an observed
pair (`⇤0,� ⇤1 ) to be consistent with Bayesianism. Agents are Bayesian if they (i) possess a well-
defined subjective belief over the set of state-signal pairs; (ii) assign positive probabilities
to signals that occur with positive probabilities; and (iii) update their beliefs following each
signal that occurs with a positive probability using Bayes’ rule.

Thefirst two requirements canbe formalized in the followingway: First, agentsmust have a
subjective distributionQ 2 �(- ⇥() over the set of states and signals.5 Second, their subjective
distributionmust assign a positive probability to any signal that is realized with a positive
probability. This is to ensure that agents can use Bayes’ rule following every contingency. This
requirement can be expressed using the following notion:

Definition 1. If % and& are probability distributions over the samemeasurable space, % is
uniformly absolutely continuous with respect to& if there exists a positive constant 2 such
that % (⇢ )  2& (⇢ ) for anymeasurable set ⇢ .6

I require the subjective distribution Q to be such that the true distribution of signals P
is uniformly absolutely continuous with respect to the (-marginalQ( . When P has a finite
support, this condition reduces to the requirement thatQ does not rule out any signal that
is realized with a positive probability. More generally, the uniform absolute continuity re-
quirement ensures that agents’ beliefs do not disproportionately discount the likelihood of
certain signals. Although this condition is not necessary for the paper’s main finding, having
amore demanding notion of Bayesianism strengthens the result by highlighting the fact that
the conclusion does not rely on the inapplicability of Bayes’ rule after zero-probability events.
It also allowsme to turn the statement of themain result into an “if and only if” statement.

The third criterion for Bayesianism is agents’ use of Bayes’ rule to update their beliefs. This
criterion is formally expressed through the concept of regular conditional probability. Given
the measurable space (- ⇥ ( ,X ⇥ S) and probability distribution Q 2 �(- ⇥ (), a regular
conditional probability ofQ given S is a mapping a : ( ⇥ X ! [0, 1] such that (i) a (A , ·) is a
probability distribution on - for every A 2 ( , (ii) themapping A 7! a (A ,⇡) is measurable for

5Note that the subjective distributionQ does not have an 7 subscript since I have assumed that agents are ex ante identical.
6See Lemma 1 of the appendix for an equivalent way of defining uniform absolute continuity.
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all⇡ 2 X, and (iii) the kernela satisfies

Q(⇡ ⇥ ⇢ ) =
π
⇢
a (A ,⇡)Q( (3A ) (1)

for all⇡ 2 X and ⇢ 2 S, whereQ( is the (-marginal ofQ. The regular conditional probabilitya
defines amapping i : A 7! a (A , ·) from agents’ signals to their posteriors. Agents are Bayesian
given subjective distributionQ if they use this mapping to update their beliefs.

The regular conditional probabilitya determines agents’ posterior beliefs as a function of
their subjective belief and the realized signal. However, it does not specify the distribution
of those posterior beliefs. In particular, for any event ⇡ 2 X, a (A ,⇡) is a random variable
whose distribution depends on the distribution of the signal A . To determine the probability
with which each posterior is realized, one needs to use the true distribution of signals. Given
a regular conditional probability a and the true distribution of signals P, agents’ posterior
about the state F is distributed according to the probability distribution �a 2 �(�(- )), defined
as

�a ({`1 2 �(- ) : `1 2 ⇢ }) ⌘ P ({A 2 ( : a (A , ·) 2 ⇢ }) (2)

for all ⇢ 2 S. This is the observed distribution of posteriors if agents are Bayesian with
subjective distribution Q (and the corresponding a) and the true distribution of signals is
given by P.

I can now define what it means for agents’ observed belief sequence to be consistent with
Bayesianism.

Definition 2. Given the state space - , signal space ( = �(- ), and true distribution of signals
P 2 �((), a pair of observations (`⇤0,� ⇤1 ), consisting of agents’ prior and the distribution of
their posteriors about the state, is consistent with Bayesianism if there exists a subjective
distributionQ 2 �(- ⇥ () for agents that satisfies the following conditions:

(a) Q- = `⇤0,

(b) P is uniformly absolutely continuous with respect toQ( ,

(c) Q has a regular conditional probabilitya such that �a = � ⇤1 ,

whereQ- andQ( are the - - and (-marginals of the subjective distributionQ, respectively,
and �a is the distribution of posteriors defined in (2).

This definition formalizes the intuitive notion of Bayesianism laid out at the beginning
of this subsection. The analyst’s task is to find a subjective distributionQ that explains the
observed changes in agents’ beliefs. This conjecturedQ is a joint distribution for the state
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and signal that must satisfy three conditions: Condition (a) of Definition 2 simply requires
the conjectured distribution to be consistent with the observed prior. Condition (b) is the
requirement that agents assign non-vanishing probabilities to signals that are realized with
positive probabilities. Condition (c) requires that the observed distribution of posteriors
matches the distribution obtained when agents start with the conjectured distribution Q,
observe signals as per P, and update their beliefs using Bayes’ rule.

3 The Empirical Content of Bayesianism

3.1 TheMain Result

The paper’s main result provides a necessary and su�cient condition for the observed pair
(`⇤0,� ⇤1 ) to be consistent with Bayesianism:

Theorem 1. A pair (`⇤0,� ⇤1 ) is consistent with Bayesianism if and only if the mean of the dis-
tribution of posteriors `⇤1 ⌘

Ø
`� ⇤1 (3`) is uniformly absolutely continuous with respect to the

prior `⇤0.

Proof of the “if” direction. The proof of this direction is constructive. Given themeasurable
space (- ,X) and the true signal distribution P, I construct the subjective distributionQ that
rationalizes an observed pair

�
`⇤0,�

⇤
1
�
that satisfies

`⇤1(⇡)  2`⇤0(⇡) (3)

for all ⇡ 2 X.7 Since `⇤1 and `⇤0 are both probability measures on (- ,X), the constant 2 in
equation (3) must be at least weakly larger than one. If 2 < 1, then `⇤1(- ) < 2`⇤0(- ) = 2 < 1, a
contradiction. If 2 = 1, then `⇤1 = `⇤0. This is because `

⇤
1(⇡)  `⇤0(⇡) implies `⇤1(⇡2 ) � `⇤0(⇡2 ),

where⇡2 2 X denotes the complement of⇡ . But `⇤1(⇡2 )  `⇤0(⇡2 ) by equation (3). Therefore,
`⇤1(⇡) = `⇤0(⇡). Since⇡ is an arbitrary measurable set, `⇤1 = `⇤0. In the remainder of the proof,
I construct the subjective distributionQ that rationalizes (`⇤0,� ⇤1 ), separately for the 2 > 1 and
2 = 1 cases.

I first prove the result for the 2 > 1 case. I start by constructing the regular conditional
probability a : ( ⇥ X ! [0, 1] that represents agents’ posterior about the state F 2 - condi-
tional on the signal A . Let  2 ( denote a signal such that P( ) = 0. Such a signal always exists
since ( = �(- ) is uncountable, but there are at most countably many signals A 2 ( such that
P(A ) > 0. For any A 2 ( such that i (A ) 2 supp� ⇤1 and A <  , seta (A ,⇡) = i (A ) (⇡) for all⇡ 2 X.

7For anymetric space - , the sigma-algebra on - is assumed to be the Borel sigma-algebra, denoted by X, and �(- ) denotes the set of
probability distributions on (- , X) , endowed with the topology of weak convergence and the corresponding Borel sigma-algebra.
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Set
a ( ,⇡) = 2

2 � 1`
⇤
0(⇡) � 1

2 � 1`
⇤
1(⇡)

for all⇡ 2 X. Finally, seta (A ,⇡) = `⇤0(⇡) for any A 2 ( such that i (A ) 8 supp� ⇤1 [ { } and all
⇡ 2 X, indicating that agents’ posterior equals their prior conditional on any signal realized
with zero probability. Note that, by construction, the mapping A 7! a (A ,⇡) is measurable
for any ⇡ 2 X. Therefore, to show that a is a kernel, it is su�cient to show that a (A , ·) is a
probability distribution on (- ,X) for all A 2 ( . This holds by construction for all A <  . In
order to verify thata ( , ·) is a probability measure, first note that,

a
�
 ,-

�
=

2
2 � 1`

⇤
0(- ) � 1

2 � 1`
⇤
1(- ) = 1,

and

a
�
 , ;

�
=

2
2 � 1`

⇤
0(;) �

1
2 � 1`

⇤
1(;) = 0,

where I am using the facts that `⇤0(- ) = `⇤1(- ) = 1 and `⇤0(;) = `⇤1(;) = 0 since `⇤0 and `⇤1 are
both probability measures on - . Next note that, for any set⇡ 2 X,

a
�
 ,⇡

�
=

2
2 � 1`

⇤
0(⇡) � 1

2 � 1`
⇤
1(⇡) � 2

2 � 1`
⇤
0(⇡) � 2

2 � 1`
⇤
0(⇡) = 0,

where the inequality follows equation (3). Finally, a ( , ·) is countably additive since both
`⇤0 and `⇤1 are probability measures and thus are countably additive. Therefore, a ( , ·) is a
probability measure on (- ,X).

I can now define the subjective distributionQ, starting with its (-marginal distributionQ( .
Let

Q( (⇢ ) ⌘
1
2
P(⇢ ) + 2 � 1

2
1{ 2 ⇢ },

for all ⇢ 2 S, and let
Q(⇡ ⇥ ⇢ ) ⌘

π
⇢
a (A ,⇡)Q( (3A ) (4)

for all⇡ 2 X and ⇢ 2 S. Note that since the sigma-algebra (X ⇥S) over (- ⇥() is generated by
sets of the form⇡⇥⇢ with⇡ 2 X and⇢ 2 S, the above expression fully specifies theprobability
distributionQ. Moreover, comparing equations (1) and (4) shows thata is indeed a regular
conditional probability ofQ given S. Lastly, sinceQ( (⇢ ) = 1

2P(⇢ ) + 2�1
2 1{ 2 ⇢ } � 1

2P(⇢ ) for
all ⇢ 2 S, the true distribution P is uniformly absolutely continuous with respect toQ( .

It remains to show that Q- = `⇤0 and that the distribution of posteriors �a , defined in
equation (2), coincides with the observed posterior distribution � ⇤1 . Note that, by definition,
� ⇤1 = P � i�1. Let

(̂ ⌘ suppP = {A 2 ( : i (A ) 2 supp� ⇤1 }.
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For any⇡ 2 X,

Q- (⇡) =
π
(
a (A ,⇡)Q( (3A )

=
1
2

π
(̂
i (A ) (⇡)P(3A ) + 2 � 1

2
a ( ,⇡)

=
1
2

π
i ((̂)

`(⇡)P � i�1(3`) + `⇤0(⇡) � 1
2
`⇤1(⇡)

=
1
2

π
supp� ⇤1

`(⇡)� ⇤1 (3`) + `⇤0(⇡) � 1
2
`⇤1(⇡)

=
1
2
`⇤1(⇡) + `⇤0(⇡) � 1

2
`⇤1(⇡) = `⇤0(⇡).

I next show that �a = � ⇤1 . Note that

P
��
A 2 ( : i (A ) 8 supp� ⇤1

 �
= P ({A 2 ( : A 8 suppP}) = 0.

On the other hand, by construction, P( ) = 0. Therefore, for any ⇢ 2 S,

�a (⇢ ) = P ({A 2 ( : a (A , ·) 2 ⇢ })

= P
�
{A 2 ( : a (A , ·) 2 ⇢ , i (A ) 2 supp� ⇤1 , A <  }

�
= P ({A 2 ( : i (A ) 2 ⇢ }) = � ⇤1 (⇢ ).

This completes the proof for the 2 > 1 case.
I next consider the case where 2 = 1. I construct the regular conditional probability

a : ( ⇥ X ! [0, 1] by setting a (A ,⇡) = i (A ) (⇡) for all A 2 ( such that i (A ) 2 supp� ⇤1 and all
⇡ 2 X and setting a (A ,⇡) = `⇤0(⇡) for all A 2 ( such that i (A ) 8 supp� ⇤1 and all ⇡ 2 X. By
construction, a (A , ·) is a probability distribution on (- ,X), and themapping A 7! a (A ,⇡) is
measurable for all⇡ 2 X. I set the (-marginalQ( of the subjective distribution equal to the
true distributionP of signals and defineQ as in (4). By construction,a is a regular conditional
probability ofQ given S, and P is uniformly absolutely continuous with respect toQ( . Next,
note that, for any⇡ 2 X,

Q- (⇡) =
π
(
a (A ,⇡)P(3A ) =

π
supp� ⇤1

`(⇡)� ⇤1 (3`) = `⇤1(⇡) = `⇤0(⇡),

where the last equality follows the fact that `1 = `⇤0 when 2 = 1, established in the first
paragraph of the proof. Moreover, by an argument similar to the 2 > 1 case,

�a (⇢ ) = P ({A 2 ( : a (A , ·) 2 ⇢ }) = P ({A 2 ( : i (A ) 2 ⇢ }) = � ⇤1 (⇢ )

for all ⇢ 2 S. This shows that the subjective distributionQ constructed above rationalizes the
observed pair (`⇤0,� ⇤1 ). ⇤

8



Proof of the “only if” direction. LetQ denote agents’ subjective distribution on (- ⇥ () and
a denote the regular conditional probability of Q given S. The existence of a follows the
assumption thatQ satisfies condition (c) of Definition 2. SinceQ satisfies condition (a) and a
is a regular conditional probability ofQ given S,

`⇤0(⇡) = Q- (⇡) =
π
(
a (A ,⇡)Q( (3A )

for all⇡ 2 X. On the other hand, for any⇡ 2 X,

`⇤1(⇡) =
π
(
`(⇡)� ⇤1 (3`) =

π
(
`(⇡)�a (3`) =

π
(
a (A ,⇡)P(3A ),

where the secondequality isdue to theassumption thatQ satisfies condition (c) ofDefinition2,
and the third equality follows thedefinitionof�a . Finally,P is uniformly absolutely continuous
with respect toQ( by condition (b) of Definition 2. Therefore, by Lemma 1 of the appendix,
there exists a Radon–Nikodym derivative 5 ⌘ 3P

3Q(
that is bounded up to sets ofQ(-measure

zero. Therefore,π
(
a (A ,⇡)P(3A ) =

π
(
a (A ,⇡) 5 (A )Q( (3A )  2

π
(
a (A ,⇡)Q( (3A ),

where 2 denotes a positive constant such that 5  2 withQ(-probability one. Combining the
last three displays implies that `⇤1(⇡)  2`⇤0(⇡). The fact that 2 can be chosen independently
of the set⇡ 2 X establishes that `⇤1 is uniformly absolutely continuous with respect to `⇤0(⇡)
and completes the proof. ⇤

The uniform absolute continuity of the posterior mean with respect to the prior encom-
passes the entire empirical content of Bayesianism. Absent additional a priori restrictions on
what constitutes a reasonable subjective distribution, any belief sequence that satisfies this
condition is consistent with Bayesian updating. It is easy to see that the absolute continuity
condition is necessary forBayesianism: If theprior of aBayesian agent assigns zeroprobability
to an event, her posterior must also assign zero probability to the event—regardless of agents’
subjective belief and the true distribution of signals. What is more surprising is that absolute
continuity is also su�cient for consistencywith Bayesianism. The proof establishes this result
by constructing a subjective distributionQ starting from a pair (`⇤0,� ⇤1 ), which satisfies the
absolute continuity condition, and showing that the conjecturedQ satisfies the properties
set out in Definition 2.

3.2 Special Cases

Building on Theorem 1, I next discuss two of its corollaries. The first corollary addresses
scenarios where the state space - is finite, a common situation in applications. The corollary

9



follows from the theorem given the following observation: For two distributions % and& over
a finite set, % is uniformly absolutely continuous with respect to& if the support of % is a
subset of the support of& .

Corollary 1. Suppose the state space - is finite. A pair (`⇤0,� ⇤1 ) is consistent with Bayesianism
if and only if

supp`⇤1 ✓ supp`⇤0,

where `⇤1 ⌘
Ø
`� ⇤1 (3`) denotes the mean of the distribution of posteriors.

This result summarizes the empirical content of Bayesianism in discrete settings. The
mean posterior belief cannot assign positive probabilities to states that have zero probability
according to the prior. The necessity of this property for beliefs to be consistentwith Bayesian-
ism is apparent given Bayes’ rule. The corollary goes a step further by establishing that this
property is also su�cient for belief sequences to be consistent with Bayesianism. A further
corollary of Corollary 1 is that any posterior distribution is consistent with Bayesianismwhen
the prior has full support over a finite state space.

Corollary 2. Suppose the state space - is finite and `⇤0 has full support over - . Then the pair
(`⇤0,� ⇤1 ) is consistent with Bayesianism for any distribution � ⇤1 of posteriors.

The following example illustrates an application of the theorem and its corollaries:

Example 1. The state takes values in the set - = {� ,!}. Agents’ observed prior is the uniform
distribution over - . The observed distribution of posteriors � ⇤1 is as follows: For a quarter of
agents, the belief that the state is� goes up to 0.8. The remaining agents become certain that
the state is� . Should the observation of this belief sequence lead the analyst to conclude that
agents are not Bayesian? The answer is no; the observed pair (`⇤0,� ⇤1 ) is indeed consistent
with Bayesianism. This conclusion follows Corollary 2 of Theorem 1 by noting that `⇤0 has full
support over - .

The observation of � ⇤1 imposes some restrictions on the true distribution of signals P
and themapping i used by agents to update their beliefs. Since agents’ posteriors take on
two values, there are at least two signals that are realized with positive probabilities. The
observation of one set of signals moves agents’ posterior belief that the state is� to 0.8. Since
a quarter of agents endupwith the posterior`1(� ) = 0.8, the signals that lead to this posterior
must have probability P({A : i (A ) = (`1(� ) = 0.8)}) = 0.25. Likewise, there is a set of signals
that has true probability P({A : i (A ) = (`1(� ) = 1)}) = 0.75 andmakes agents certain that
the state is� . With slight abuse of notation, in the remainder of the example, I refer to the
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{A : i (A ) = (`1(� ) = 0.8)} and {A : i (A ) = (`1(� ) = 1)} events simply as the A = 0.8 and A = 1
signals, respectively.8

I illustrate how (`⇤0,� ⇤1 ) can be rationalized by finding a subjective distributionQ such that
the belief sequence of a Bayesian agent with subjective distributionQmatches the observed
prior and distribution of posteriors. The distributionQ needs to satisfy three requirements
for it to rationalize the observed prior `⇤0 and posterior distribution � ⇤1 . First, Q must be
consistent with the observed prior `⇤0; i.e.,Q(� ) = `⇤0(� ) = 0.5. Second, agents must assign
positive probabilities to the A = 0.8 and A = 1 signals for Bayes’ rule to be applicable after
the observation of those signals. Third, agents’ posterior conditional on the observation
of the A = 0.8 and A = 1 signals must be consistent with their observed posteriors; i.e.,
Q(� |A = 0.8) = 0.8 andQ(� |A = 1.0) = 1.0.

One needs to also specify what agents believe about the probability of observing signals
other than 0.8 and 1.0. I start by assuming that agents believe the signal can only take values
A = 0.8 and A = 1.0. This assumption constrains Q to satisfy Q({(F , A ) : A 2 {0.8, 1.0}}) = 1.
This constraint, together with the requirements previously discussed and the requirement
thatQ(F , A ) � 0 for any (F , A ), yields a mixed system of equalities and inequalities for the four
unknown probabilitiesQ(� , 0.8),Q(! , 0.8),Q(� , 1.0), andQ(! , 1.0):

Q(� , 0.8) +Q(! , 0.8) > 0, (5)

Q(� , 1.0) +Q(! , 1.0) > 0, (6)
Q(� , 0.8)

Q(� , 0.8) +Q(! , 0.8) = 0.8, (7)

Q(� , 1.0)
Q(� , 1.0) +Q(! , 1.0) = 1.0, (8)

Q(� , 0.8),Q(! , 0.8),Q(� , 1.0),Q(! , 1.0) � 0, (9)

Q(� , 0.8) +Q(� , 1.0) = 0.5, (10)

Q(! , 0.8) +Q(! , 1.0) = 0.5. (11)

It is easy to verify that this system does not have a solution.
Thus, for the observed belief sequence to arise from Bayesian updating by agents, they

must believe the possibility that the signal takes values outside the set {0.8, 1.0}. With slight
abuse of notation, I let A =  denote the event that the signal takes a value outside the set

8This would not be an abuse of notation under the assumption that i is the identity mapping. Note that the assumption that i is
the identity mapping is innocuous in this example since observing � ⇤1 only identifies P � i�1 = � ⇤1—but not P or i . Nonetheless, the
construction in the example can be easily modified to allow for the possibility that � ⇤1 , P, and i are separately identified by the analyst. I
forgo this extension here since it would lead to additional notational complexity without o�ering any new insights. See the proof of Theorem
1 for the general construction.
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{0.8, 1.0}. Constraints (10) and (11) now have to bemodified as follows:

Q(� , 0.8) +Q(� , 1.0) +Q(� ,  ) = 0.5, (12)

Q(! , 0.8) +Q(! , 1.0) +Q(� ,  ) = 0.5. (13)

The remaining requirements, expressed in equations (5)–(9), remain intact. However,Qmust
now additionally satisfy the two non-negativity requirements:

Q(� ,  ),Q(! ,  ) � 0. (14)

Equations (5)–(9) and (12)–(14) constitute amixed systemof equalities and inequalities for the
six unknown probabilitiesQ(� , 0.8),Q(! , 0.8),Q(� , 1.0),Q(! , 1.0),Q(� ,  ), andQ(! ,  ). The
fact that themean of the posterior distribution has the same support as the prior is su�cient
to ensure that this system has a solution. One such solution—and the one corresponding to
the proof of Theorem 1—is as follows:

0.8 1.0  

� 0.25 0.25 0

! 0.0625 0 0.4375

Note that the observed pair (`⇤0,� ⇤1 ) can be rationalized only if agents are allowed to have a
misspecifiedbelief about thedistributionof signals. If agentswere tohold a correctly specified
belief, the subjective distributionQwould have to agree with the true distribution P on the
probabilities of di�erent signals. But then the systems of equalities and inequalities that
determineQwould have no solution.

4 Discussion

This sectiondiscusses the assumptions that underpin thepaper’smain result andhowrelaxing
them changes the conclusion.

4.1 Assumptions

The paper makes a number of explicit and implicit assumptions in order to obtain the char-
acterization in Theorem 1. These assumptions can be divided into three categories:

1. Homogeneity assumptions: Agents are ex ante identical, use the same function tomap
their signals to posteriors, and receive i.i.d. signals.
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2. Knowledge assumptions: The analyst directly and perfectly observes agents’ beliefs—
instead of having to identify them from choice data. He knows the true distribution of
signals and themapping agents use to update their beliefs. He observes the population
distribution of posteriors.

3. No restrictions on the subjective belief: The analyst puts no restrictions on what con-
stitutes a reasonable subjective belief. Moreover, the analyst does not observe agents’
beliefs concerning the likelihood of various signals.

These sets of assumptions serve di�erent purposes. The homogeneity assumptions help
with the identification of agents’ subjective beliefs. The analyst observes each agent only
after the realization of a single signal. Without the homogeneity assumptions, how an agent
behaves after a signal would not be informative of how other agents would have behaved if
they observed that same signal.

The knowledge assumptions limit what the analyst can freely choose in order to rationalize
his observations. When the analyst knows an object such as the true signal distribution, he
has no flexibility in choosing that object to rationalize agents’ behavior. This limits the set of
observations that can be rationalized by the analyst andmakes it easier for him to reject his
observations as consistent with Bayesianism.

The first two sets of assumptions strengthen the “if” direction of Theorem 1. Under these
assumptions, the analyst cannot reject agents’ Bayesianism as long as his observations satisfy
the uniform absolute continuity condition. This remains true despite the constraints these
assumptions place on the analyst’s ability to rationalize observations. If these assumptions
were to be relaxed, certain observations—even those that do not adhere to the uniform
absolute continuity condition—might still be explainable as consistent with Bayesianism.
Hence, the uniform absolute continuity conditionmay be seen as an upper bound on the
empirical content of Bayesianism. The main role of the first two sets of assumptions is to
make this bound tight by turning the theorem into an “if and only if” result.

The final set of assumptions enables the analyst to freely choose the subjective beliefQ to
rationalize his observations. The analyst is assumed to perfectly observe what agents believe
about the state but not how they intend to update those beliefs. Therefore, he is free to form
any conjecture about how agents are planning to do so. This degree of freedommakes it more
challenging for the analyst to disprove the Bayesianism of agents. Unlike the first two sets of
assumptions, which narrow the range of observations consistent with Bayesianism, the third
set introduces more flexibility, thus expanding this range.
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The assumption that any well-defined subjective distribution is permissible is made in
keeping with Savage (1972)’s idea of purely subjective beliefs. I assume that any subjective
beliefQ that is consistent with agents’ elicited beliefs is a valid subjective distribution. Agents’
rationality is judged not based on their subjective beliefs but based on how they update those
beliefs. In the next subsection, I discuss two alternatives to this assumption proposed in the
literature and how they change the conclusion of Theorem 1.

4.2 Alternative Notions of Bayesianism

The first alternative I consider assumes that agents have a correctly specified belief about
the distribution of signals. This assumption leads to the martingale property of Bayesian
beliefs: The expectation of the posterior must equal the prior. Aumann andMaschler (1995)
and Kamenica and Gentzkow (2009) show that this is indeed the only restriction imposed
on beliefs by the requirement that agents are Bayesian. The following theorem generalizes
this result to general metric spaces. More importantly, however, it highlights the fact that the
martingale property characterizes the empirical content of Bayesianism only when agents
are required to have correct beliefs about the distribution of signals.

Theorem 2. The pair (`⇤0,� ⇤1 ) is consistent with Bayesianism given a subjective distributionQ

with the (-marginal satisfyingQ( = P if and only if `0 = `⇤1 ⌘
Ø
`� ⇤1 (3`).

Proof. Proof of the “if” direction is identical to the 2 = 1 case in the proof of Theorem 1’s “if”
direction. The proof of the “only if” direction follows similar steps as in the proof of Theorem
1’s “only if” direction. In particular, by an identical argument, `⇤0(⇡) =

Ø
(
a (A ,⇡)Q( (3A ) and

`⇤1(⇡) =
Ø
(
a (A ,⇡)P(3A ). The assumption thatQ( = P completes the proof. ⇤

Amore permissive notion of Bayesianism is proposed by Shmaya and Yariv (2016). They
allow Bayesian agents to have incorrect beliefs about the distribution of signals— as long as
the supports of those beliefs coincide with the support of the true distribution. The following
theorem generalizes Shmaya and Yariv (2016)’s Lemma 1 to general metric state spaces and
arbitrary true signal distributions. It reduces to their result when both - and suppP are finite
sets. However, its main significance is to clarify that Shmaya and Yariv (2016)’s conclusion
relies on an a priori restriction on what constitutes a reasonable subjective distribution.

Theorem 3. The following statements are equivalent:

A. The pair (`⇤0,� ⇤1 ) is consistent with Bayesianism given a subjective distributionQwith a
(-marginalQ( that is uniformly absolutely continuous with respect to P.
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B. There exists a probability measure _ 2 �(() such that _ and � ⇤1 are mutually uniformly
absolutely continuous and `⇤0 =

Ø
`_(3`).

Proof. First, suppose there exists a probability measure _ 2 �(() such that _ and � ⇤1 are
mutually uniformly absolutely continuous and `⇤0 =

Ø
`_(3`). By Lemma 1 of the appendix,

there exist Radon–Nikodym derivatives 5 ⌘ 3_
3� ⇤1

and 1
5 ⌘

3� ⇤1
3_ such that 2  5  ⇠ for some

positive constants 2 ,⇠ (up to sets of � ⇤1- and _-measure zero). Set a (A ,⇡) = i (A ) (⇡) for all
A 2 ( and⇡ 2 X, and setQ( (3A ) = 5 (i (A ))P(3A ). I need to show thatQ( , as defined above,
is indeed a probability distribution on (( ,S). By construction,Q( (⇢ ) � 0 for all ⇢ 2 S, and
Q( (;) = 0. Next, note thatπ

(
Q( (3A ) =

π
(
5 (i (A ))P(3A ) =

π
(
5 (`)P � i�1(3`) =

π
(
5 (C)� ⇤1 (3`) =

π
(
_(3`) = 1,

where the first equality is by definition, the second one uses the change-of-variables formula
for pushforwardmeasures, the third equality is due to the fact that � ⇤1 = P � i�1, the fourth
one uses the definition of 5 , and the last equality is because _ is a probability measure on ( .
Finally,Q( is countably additive since P is countably additive. Therefore,Q( is a well-defined
probability distribution. I finish the construction by definingQ as in equation (1). Note that,
by construction, a is a conditional probability ofQ given S. Furthermore, by an argument
similar to the one in the above display,

Q- =
π
(
a (A , ·)Q( (3A ) =

π
(
i (A ) 5 (i (A ))P(3A ) =

π
(
`5 (`)� ⇤1 (3`) =

π
(
`_(`) = `⇤0,

where the last equality is by assumption. Therefore, condition (a) of Definition 2 is satisfied.
Furthermore, since Q( (3A ) = 5 (i (A ))P(3A ) and 2  5  ⇠ almost surely, Q( and P are
mutually uniformly absolutely continuous. That is, condition (b) of Definition 2 is satisfied,
andQ( is uniformly absolutely continuous with respect to P. On the other hand,

�a (⇢ ) = P ({A 2 ( : a (A , ·) 2 ⇢ }) = P ({A 2 ( : i (A ) 2 ⇢ }) = P � i�1(⇢ ) = � ⇤1 (⇢ )

for all ⇢ 2 S, implying that condition (c) is also satisfied.
Next, suppose (`⇤0,� ⇤1 ) is consistentwithBayesianismgiven a subjective distributionQwith

a (-marginalQ( that is uniformly absolutely continuous with respect to P, and leta denote
the regular conditional probability ofQ given S. The existence of a follows the assumption
thatQ satisfies condition (b) of Definition 2. I define _ 2 �(() as follows:

_(⇢ ) ⌘ Q( ({A 2 ( : a (A , ·) 2 ⇢ })

for all ⇢ 2 S. I next show that _ and � ⇤1 are mutually uniformly absolutely continuous and
`⇤0 =

Ø
`_(3`). SinceQ satisfies condition (a) anda is a regular conditional probability ofQ
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given S,
`⇤0 = Q- =

π
(
a (A , ·)Q( (3A ) =

π
(
`_(3`),

where the last equality is by definition. On the other hand, for all ⇢ 2 S,

_(⇢ ) = Q( ({A 2 ( : a (A , ·) 2 ⇢ }) � 1
2
P({A 2 ( : a (A , ·) 2 ⇢ }) = 1

2
�a (⇢ ) =

1
2
� ⇤1 (⇢ )

for some positive constant 2 , where the first two equalities are by definition, the inequality
is by condition (b) of Definition 2, and the third equality is by condition (c) of Definition 2.
Likewise, sinceQ( is uniformly absolutely continuous with respect P, for all ⇢ 2 S,

_(⇢ ) = Q( ({A 2 ( : a (A , ·) 2 ⇢ })  ⇠P({A 2 ( : a (A , ·) 2 ⇢ }) = ⇠�a (⇢ ) = ⇠� ⇤1 (⇢ )

for some positive constant ⇠ . The fact that 2 and ⇠ can be chosen independently of ⇢ 2
S in the above two displays establishes that _ and � ⇤1 are mutually uniformly absolutely
continuous. ⇤

Technical Appendix

Lemma 1. Let % and & be probability distributions over the same measurable space. % is
uniformly absolutely continuous with respect to& if and only if there exists a Radon–Nikodym
derivative 5 ⌘ 3%

3& and a positive constant 2 such that 5  2 up to sets of& -measure zero.

Proof. First, suppose there exists a Radon–Nikodymderivative 5 ⌘ 3%
3& and a positive constant

2 such that 5  2 up to sets of& -measure zero. For anymeasurable set ⇢ ,

% (⇢ ) =
π
⇢
3% =

π
⇢
5 3&  2

π
⇢
3& = 2& (⇢ ).

That is, % is uniformly absolutely continuous with respect to& .
Next, suppose % is uniformly absolutely continuous with respect to& . Then, by definition,

% (⇢ )  2& (⇢ ) for some 2 and any measurable set ⇢ . In particular, % (⇢ ) = 0 for any ⇢ for
which & (⇢ ) = 0. Therefore, % is absolutely continuous with respect to & , and so, by the
Radon–Nikodym theorem, there exists a derivative 5 ⌘ 3%

3& . I finish the proof by showing that
5 is bounded& -almost surely. Toward a contradiction, suppose that for any positive constant
⇠ there exists a measurable set ⇢ with& (⇢ ) > 0 such that 5 > ⇠ on ⇢ . Then,

% (⇢ ) =
π
⇢
3% =

π
⇢
5 3& > ⇠

π
⇢
3& = ⇠& (⇢ ).

Since⇠ is arbitrary, there exists no constant 2 such that% (⇢ )  2& (⇢ ) for all⇢ , a contradiction
to the assumption that % is uniformly absolutely continuous with respect to& . ⇤
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