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B Omitted Details for the Business-Cycle Economy

This appendix details the problems of different agents in the business-cycle application
of Section 5.

Final-good producers

The final good𝑌𝑡 is produced by competitive firms by combining a continuum of interme-
diate goods, indexed by 𝑖 , according to the CES production function

𝑌𝑡 =

[∫ 1

0
𝑌𝑡 (𝑖 )

1
1+𝜆𝑝 𝑑𝑖

]1+𝜆𝑝
,

where 𝜆𝑝 denotes the elasticity of substitution. Profit maximization and the zero-profit
condition imply that the price of the final good is given by the price index

𝑃𝑡 =

[∫ 1

0
𝑃𝑡 (𝑖 )

1
𝜆𝑝 𝑑𝑖

]𝜆𝑝
,

where 𝑃𝑡 (𝑖 ) denotes the price of intermediate good 𝑖 . The demand for good 𝑖 is given by
the isoelastic demand schedule

𝑌𝑡 (𝑖 ) =
(
𝑃𝑡 (𝑖 )
𝑃𝑡

)− 1+𝜆𝑝
𝜆𝑝

𝑌𝑡 .
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Intermediate-goods producers

Amonopolist produces intermediate good 𝑖 according to the production function

𝑌𝑡 (𝑖 ) = max
{
𝑎𝑡𝐾𝑡 (𝑖 )𝛼

(
𝛾 𝑡𝐿𝑡 (𝑖 )

)1−𝛼 −𝛾 𝑡𝐹 , 0} ,
where 𝐾𝑡 (𝑖 ) and 𝐿𝑡 (𝑖 ) denote the capital and labor inputs of themonopolist, respectively,
𝐹 is a fixed cost of production, chosen so that profits are zero along the balanced-growth
path,𝛾 denotes the exogenous rate of labor-augmenting technological progress, and 𝑎𝑡 is
a stationary TFP shock, which follows the AR(1) process log 𝑎𝑡 = 𝜌𝑎 log 𝑎𝑡−1 + 𝜀𝑎𝑡 with 𝜀𝑎𝑡
i.i.d. N(0, 𝜎2𝑎 ).

Intermediate-goods producers are subject to nominal frictions à la Calvo. Each period
the price of a randomly-selected fraction 𝜉𝑝 of intermediate goods grows at rate 𝜋 , where
𝜋 denotes the value of gross inflation rate along the balanced-growth path. The remaining
intermediate-goods producers choose their prices 𝑃𝑡 (𝑖 ) optimally by maximizing the
present-discounted value of future profits,

𝐸𝑝𝑡

[ ∞∑︁
𝑠=0

𝜉 𝑠𝑝𝛽
𝑠Λ𝑡+𝑠

(
𝜋 𝑠𝑃𝑡 (𝑖 )𝑌𝑡+𝑠 (𝑖 ) −𝑊𝑡+𝑠𝐿𝑡+𝑠 (𝑖 ) − 𝑟𝑡+𝑠𝐾𝑡+𝑠 (𝑖 )

)]
,

subject to the demand curve

𝑌𝑡+𝑠 (𝑖 ) =
(
𝜋 𝑠𝑃𝑡 (𝑖 )
𝑃𝑡+𝑠

)− 1+𝜆𝑝
𝜆𝑝

𝑌𝑡+𝑠 ,

where Λ𝑡 is themarginal utility of nominal income,𝑊𝑡 is the nominal wage, 𝑟𝑡 is the rental
rate of capital, and 𝐸𝑝𝑡 denotes the time-𝑡 forecasts of intermediate-goods producers
about the path {Λ𝑡+𝑠 ,𝑊𝑡+𝑠 , 𝑟𝑡+𝑠 , 𝑃𝑡+𝑠 ,𝑌𝑡+𝑠 , 𝑎𝑡+𝑠 }𝑠≥1 of variables they take as given.

Investment firms

The capital stock of the economy is owned by competitive investment firms. They take
the rental rate of capital and the price of the final good as given andmaximize the present-
discounted value of profits

𝐸𝑖𝑡

[ ∞∑︁
𝑠=0

𝛽𝑠Λ𝑡+𝑠 (𝑟𝑡+𝑠𝐾𝑡+𝑠 − 𝑃𝑡+𝑠 𝐼𝑡+𝑠 )
]
,
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subject to the capital accumulation equation

𝐾𝑡+1 = (1 − 𝛿 )𝐾𝑡 + 𝜇𝑡
(
𝐼𝑡 − 𝑆𝑘

(
𝐼𝑡

𝐾𝑡

)
𝐾𝑡

)
,

where 𝐼𝑡 is investment, 𝐾𝑡 denotes the physical capital, 𝐸𝑖𝑡 denotes the time-𝑡 forecasts of
investment firms, 𝑆𝑘 (·) represents the adjustment cost function, and 𝜇𝑡 is the investment
shock, which follows the AR(1) process log𝜇𝑡 = 𝜌𝜇 log𝜇𝑡−1 + 𝜀𝜇𝑡 with 𝜀𝜇𝑡 is i.i.d. N(0,
𝜎2𝜇). I assume that the adjustment cost satisfies 𝑆𝑘 = 𝑆′

𝑘
= 0 and 𝑆′′

𝑘
= 𝜍𝑘 > 0 along the

balanced-growth path.1 I also assume there is no spot market for installed capital.2

Employment agencies

There is a continuumofhouseholds, indexedby 𝑗 , eachofwhich is amonopolistic supplier
of a specialized type of labor. A competitive employment agency combines specialized
labor into a homogeneous labor input using the CES function

𝐿𝑡 =

[∫ 1

0
𝐿𝑡 (𝑗 )

1
1+𝜆𝑤 𝑑 𝑗

]1+𝜆𝑤
,

where 𝜆𝑤 denotes the elasticity of substitution among differentiated types of labor. Profit
maximization by employment agencies and the zero-profit condition imply that the price
of the homogeneous labor input is given by the wage index

𝑊𝑡 =

[∫ 1

0
𝑊𝑡 (𝑗 )

1
𝜆𝑤

]𝜆𝑤
,

and the demand for the labor of type 𝑗 is given by the isoelastic labor-demand curve

𝐿𝑡 (𝑗 ) =
(
𝑊𝑡 (𝑗 )
𝑊𝑡

)− 1+𝜆𝑤
𝜆𝑤

𝐿𝑡 .

1Note that the adjustment cost is a neoclassical cost à la Hayashi (1982), not the investment-adjustment
cost common in the DSGE literature. The investment-adjustment cost specification leads to an investment
Euler equation with a backward-looking term, whereas investment will have no backward-looking term in
the current specification.

2This assumption is immaterial under rational expectations. However, this may no longer be the case
away from rational expectations: When there is no spot market for capital, investment depends on agents’
expectations about the infinite future path of returns to capital; when a spot market exists, investment only
depends on agents’ expectations of the rental rate of capital and its price in the next period.
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Households

Households supply labor, consume the final good, and save in a short-term nominal
government bond. Their wages are subjective to nominal rigidities à la Calvo. However,
as is common in the literature, I assume that a competitive insurance agency fully insures
households against fluctuations in their labor income resulting from nominal frictions.
Consequently, the equilibrium labor income of each household is equal to𝑊𝑡𝐿𝑡 , the
average labor income in the economy.

Each household takes the labor income and the stream of profits from the ownership
of firms as given and chooses consumption and saving in government bonds tomaximize
the utility function

𝐸𝑐𝑡

[ ∞∑︁
𝑠=0

𝛽𝑠
(
log(𝐶𝑡+𝑠 ) − 𝜑

𝐿𝑡+𝑠 (𝑗 )1+𝜈

1 + 𝜈

)]
,

subject to a no-Ponzi condition and the nominal budget constraint

𝑃𝑡𝐶𝑡 +𝑇𝑡 + 𝐵𝑡 ≤ 𝑅𝑡−1𝐵𝑡−1 +𝑊𝑡𝐿𝑡 + Π𝑡 ,

where 𝐶𝑡 is consumption, 𝑇𝑡 denotes lump-sum taxes, 𝐵𝑡 is the holding of one-period
government bonds, 𝑅𝑡 is the gross nominal interest rate, Π𝑡 denotes profits from the
ownership of firms,𝜈 is the inverse Frisch elasticity of labor supply, and 𝜑 is a constant
that determines the steady-state working hours. The operator 𝐸𝑐𝑡 denotes the time-𝑡
forecasts of households about the path {𝐿𝑡+𝑠 ,𝑊𝑡+𝑠 , 𝑃𝑡+𝑠 ,𝑇𝑡+𝑠 , 𝑅𝑡+𝑠 ,Π𝑡+𝑠 }𝑠≥1 of aggregate and
idiosyncratic observables that enter their decision problem.

Labor unions

Wages are set by a continuum of labor unions, also indexed by 𝑗 , each representing a
household. Each period, a randomly-selected fraction 𝜉𝑤 of unions cannot freely set the
wage of the household they represent. The nominal wages of those households grow
at the rate 𝛾𝜋 .3 The remaining fraction of labor unions sets the optimal wage𝑊𝑡 (𝑗 ) by
maximizing

𝐸𝑤𝑡

[ ∞∑︁
𝑠=0

𝜉 𝑠𝑤𝛽
𝑠

(
−𝜑 𝐿𝑡+𝑠 (𝑗 )

1+𝜈

1 + 𝜈 + Λ𝑡+𝑠 (𝛾𝜋)𝑠𝑊𝑡 (𝑗 )𝐿𝑡+𝑠 (𝑗 )
)]
,

3Since there is technological progress, absent this assumption, there would be no balanced-growth path
without wage dispersion. Note that this is different than the assumption of wage indexation common in the
DSGE literature: Wages are not indexed to the current inflation rate but to its steady-state value.
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subject to the labor demand curve

𝐿𝑡+𝑠 (𝑗 ) =
(
(𝛾𝜋)𝑠𝑊𝑡 (𝑗 )

𝑊𝑡+𝑠

)− 1+𝜆𝑤
𝜆𝑤

𝐿𝑡+𝑠 ,

where 𝐸𝑤𝑡 denotes the time-𝑡 forecasts of labor unions about the variables they take as
given.

The government

Themonetary policy sets the nominal interest rate following a Taylor rule

𝑅𝑡

𝑅
=

(
𝑅𝑡−1
𝑅

)𝜌𝑅 (𝜋𝑡
𝜋

) (1−𝜌𝑅 )𝜙𝜋
𝑚𝑡 ,

where 𝜋𝑡 ≡ 𝑃𝑡 /𝑃𝑡−1, and 𝑅 and 𝜋 are the steady-state gross nominal interest rate and
inflation rate, respectively.4 5 𝑚𝑡 is amonetary policy shock that follows the AR(1) process
log𝑚𝑡 = 𝜌𝑚 log𝑚𝑡−1 + 𝜀𝑚𝑡 with 𝜀𝑚𝑡 is i.i.d. N(0, 𝜎2𝑚).

Government spending𝐺𝑡 is exogenous. In the baseline specification, I assume that
government spending grows at the same rate as GDP, that is,𝐺𝑡 = 𝑔𝛾 𝑡 for some 𝑔 . The
government finances spending by issuing short-term nominal bonds and levying lump-
sum taxes on households. The nominal government budget constraint is given by

𝑅𝑡−1𝐵𝑡−1 + 𝑃𝑡𝐺𝑡 −𝑇𝑡 = 𝐵𝑡 ,

where𝑇𝑡 denotes nominal taxes. Taxes follow a tax rule that ensures that the real value of
public debt 𝐵𝑡 /𝑃𝑡 grows at rate𝛾 , the deterministic growth rate of the economy.6

4In the New Keynesian literature, it is often assumed that the monetary authority responds both to
changes in the inflation rate and to changes in the output gap. However, the right notion of the output
gap is not clear here: It can be defined relative to the flexible price allocation in which agents re-estimate
their models, the one in which agents’ models are unchanged, or the rational-expectations flexible-price
allocation. I bypass the question of how the output gap ought to be defined by instead assuming that the
monetary authority only responds to deviations in the inflation rate.

5The steady-state gross nominal interest rate 𝜋 can also be seen as the central bank’s inflation target.
6Ricardian equivalence does not necessarily hold when agents use simple models. Therefore, both the

timing of taxes and the value of the outstanding public debt might affect the response of the economy to
shocks. See also Eusepi and Preston (2018), where the authors use an adaptive learning framework to study
the effects of the level of public debt on the transmission of monetary policy.
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C Temporary Equilibrium of the Business-Cycle Economy

In this appendix, I list the equations that characterize the log-linearized temporary equi-
librium of the business-cycle economy studied in Section 5. These conditions character-
ize the fully flexible model used in Bayesian estimation; the baseline specification can be
obtained by setting the values of parameters 𝜉𝑤 , 𝑔 /𝑦 , 𝑏/𝑦 , 𝜎𝜓 , 𝜎𝑔 , 𝜎𝑝 , and 𝜎𝑤 equal to zero.

The steady-state values are given by 𝜌 =
𝛾
𝛽
− (1 − 𝛿 ), 𝑤 =

[
1

1+𝜆𝑝 𝛼
𝛼 (1 − 𝛼)1−𝛼 1

𝜌𝛼

] 1
1−𝛼 ,

𝑘
𝐿
= 𝑤

𝜌
𝛼
1−𝛼 ,

𝐹
𝐿
=

(
𝑘
𝐿

)𝛼
− 𝜌 𝑘

𝐿
−𝑤 , 𝑦

𝐿
=

(
𝑘
𝐿

)𝛼
− 𝐹

𝐿
, 𝑖
𝐿
= (𝛾 − (1 − 𝛿 )) 𝑘

𝐿
, 𝑐
𝐿
=

𝑦
𝐿
− 𝑖

𝐿
− 𝑔

𝑦
𝑦
𝐿
, 𝑥
𝐿
=

𝑦
𝐿
− 𝑖

𝐿
,

and 𝜏
𝐿
=

(
𝑔
𝑦
+ 1−𝛽

𝛽
𝑏
𝑦

)
𝑦
𝐿
.

The log-linear permanent-income equation is given by

𝑐𝑡 = 𝜓̂𝑡 − 𝑅𝑡 + 𝐸𝑐𝑡
[∑∞

𝑠=1 𝛽
𝑠
(
1−𝛽
𝛽

𝑥
𝑐
𝑥𝑡+𝑠 − 1−𝛽

𝛽
𝜏
𝑐
𝜏𝑡+𝑠 − 1−𝛽

𝛽
𝜓̂𝑡+𝑠 − 𝑥−𝜏

𝑐
𝑅𝑡+𝑠 + 1

𝛽
𝑥−𝜏
𝑐
𝜋𝑡+𝑠

)]
.

(C.1)

Households’ pre-tax income is given by

𝑥𝑡 =
𝑦

𝑥
𝑦𝑡 −

𝑖

𝑥
𝑖𝑡 . (C.2)

The intertemporal preference shock follows the exogenous process

𝜓̂𝑡 = 𝜌𝜓𝜓̂𝑡−1 + 𝜀𝜓𝑡 , 𝜀𝜓𝑡 ∼ N(0, 𝜎2𝜓 ). (C.3)

Investment is given by

𝑖𝑡 =𝑘𝑡 +
1
𝜍𝑘

(𝜇̂𝑡 − 𝜓̂𝑡 + 𝑐𝑡 )

+ 𝐸𝑖𝑡
[∑∞

𝑠=1 𝛽
𝑠
(
1−𝛽
𝜍𝑘 𝛽

𝜓̂𝑡+𝑠 − 1−𝛽
𝜍𝑘 𝛽

𝑐𝑡+𝑠 + 1
𝜍𝑘

(
1
𝛽
− 1−𝛿

𝛾

)
𝜌𝑡+𝑠 + 1

𝜍𝑘

(
1 − 1−𝛿

𝛾

)
𝜇̂𝑡+𝑠

)]
, (C.4)

where the investment shock follows the AR(1) process

𝜇̂𝑡 = 𝜌𝜇𝜇̂𝑡−1 + 𝜀𝜇𝑡 , 𝜀𝜇𝑡 ∼ N(0, 𝜎2𝜇). (C.5)

Capital stock evolves according to

𝑘𝑡 =
1 − 𝛿
𝛾

𝑘𝑡−1 +
(
1 − 1 − 𝛿

𝛾

) (
𝑖𝑡−1 + 𝜇̂𝑡−1

)
. (C.6)
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Government spending follows the exogenous process

𝑔𝑡 = 𝜌𝑔 𝑔𝑡−1 + 𝜀𝑔𝑡 , 𝜀𝑔𝑡 ∼ N(0, 𝜎2𝑔 ), (C.7)

and GDP is given by
𝑦𝑡 =

𝑐

𝑦
𝑐𝑡 +

𝑖

𝑦
𝑖𝑡 +

𝑔

𝑦
𝑔𝑡 . (C.8)

Inflation is given by

𝜋𝑡 = 𝜆̂𝑝𝑡 + 𝜅 (𝛼𝜌𝑡 + (1 − 𝛼)𝑤̂𝑡 − 𝑎𝑡 )

+ 𝐸𝑝𝑡
[∑∞

𝑠=1 𝜉
𝑠
𝑝𝛽

𝑠
(
1−𝜉𝑝
𝜉𝑝
𝜋𝑡+𝑠 + 𝜆̂𝑝,𝑡+𝑠 + 𝜅 (𝛼𝜌𝑡+𝑠 + (1 − 𝛼)𝑤̂𝑡+𝑠 − 𝑎𝑡+𝑠 )

)]
, (C.9)

where𝜅 ≡ (1−𝜉𝑝 ) (1−𝜉𝑝𝛽)
𝜉𝑝

is a constant, TFP follows the exogenous process

𝑎𝑡 = 𝜌𝑎𝑎𝑡−1 + 𝜀𝑎𝑡 , 𝜀𝑎𝑡 ∼ N(0, 𝜎2𝑎 ), (C.10)

and the price markup shock follows the exogenous process

𝜆̂𝑝𝑡 = 𝜌𝑝 𝜆̂𝑝,𝑡−1 + 𝜀𝑝𝑡 , 𝜀𝑝𝑡 ∼ N(0, 𝜎2𝑝 ). (C.11)

The real wage is given by

𝑤̂𝑡 =
1 + 𝛽

1 + 𝛽 − 𝜉𝑤𝛽

(
𝜆̂𝑤𝑡 + 𝜅𝑤 ℓ̂𝑡

)
+ 1
1 + 𝛽 − 𝜉𝑤𝛽

(𝑤̂𝑡−1 − 𝜋𝑡 )

+ 1+𝛽
1+𝛽−𝜉𝑤 𝛽𝐸𝑤𝑡

[∑∞
𝑠=1 𝜉

𝑠
𝑤𝛽

𝑠
(
𝜈𝑤𝜅𝑤
1−𝜉𝑤 𝛽𝜋𝑡+𝑠 + 𝜆̂𝑤,𝑡+𝑠 + 𝜅𝑤 ℓ̂𝑡+𝑠 + 𝜈𝑤𝜅𝑤𝑤̂𝑡+𝑠

)]
, (C.12)

where𝜅𝑤 ≡ (1−𝜉𝑤 ) (1−𝜉𝑤 𝛽)
𝜉𝑤𝜈𝑤 (1+𝛽) is a constant,

ℓ̂𝑡 = 𝜈𝐿𝑡 + 𝑐𝑡 − 𝑤̂𝑡 , (C.13)

and the wagemarkup shock 𝜆̂𝑤𝑡 follows the exogenous process

𝜆̂𝑤𝑡 = 𝜌𝑤 𝜆̂𝑤,𝑡−1 + 𝜀𝑤𝑡 , 𝜀𝑤𝑡 ∼ N(0, 𝜎2𝑤 ). (C.14)

Hours are given by

𝐿𝑡 =
1

1 − 𝛼

(
𝑦

𝑦 + 𝐹 𝑦𝑡 − 𝛼𝑘𝑡 − 𝑎𝑡 +
(
𝜌𝑘

𝑦 + 𝐹 − 𝛼
)
𝜌𝑡

)
, (C.15)

7



and the rental rate of capital by
𝜌𝑡 = 𝑤̂𝑡 + 𝐿𝑡 − 𝑘𝑡 . (C.16)

The nominal interest rate follows the interest rate rule

𝑅𝑡 = 𝜌𝑅𝑅𝑡−1 + (1 − 𝜌𝑅 )𝜙𝜋𝜋𝑡 + 𝑚̂𝑡 , (C.17)

where themonetary-policy shock follows the exogenous process

𝑚̂𝑡 = 𝜌𝑚𝑚̂𝑡−1 + 𝜀𝑚𝑡 , 𝜀𝑚𝑡 ∼ N(0, 𝜎2𝑚). (C.18)

Finally, taxes follow the tax rule

𝜏𝑡 =
𝑔

𝜏
𝑔𝑡 +

𝑏

𝛽𝜏

(
𝑅𝑡−1 − 𝜋𝑡

)
. (C.19)

D Bayesian Estimation

The likelihood is based on themeasurement equation(
Δ𝑌𝑡 Δ𝐶𝑡 Δ𝐼𝑡 𝐿𝑡 𝜋𝑡 Δ𝑤𝑡 𝑅𝑡

)′
=

(
𝑦𝑡 𝑐𝑡 𝑖𝑡 𝐿𝑡 𝜋𝑡 𝑤̂𝑡 𝑅𝑡

)′
+ 𝜁 ,

where Δ denotes the temporal difference operator, 𝑌 denotes real GDP per capita, 𝐶
denotes real consumption per capita, 𝐼 denotes real investment per capita, 𝐿 denotes
hours worked per capita, 𝜋 denotes the inflation rate,𝑤 denotes the real wage index, 𝑅
denotes the nominal interest rate, and 𝜁 is the vector containing the samplemean of the
vector on the left side of the above equation. The vector of means 𝜁 is only informative
about level variables that are fixed in the estimation step. Therefore, the likelihood can be
constructed using the demeaned values of Δ𝑌𝑡 , Δ𝐶𝑡 , Δ𝐼𝑡 , 𝐿𝑡 , 𝜋𝑡 , Δ𝑤𝑡 , and 𝑅𝑡 .

The data are from the Federal Reserve Economic Database (FRED). Tables D.1 and D.2
describe the original data and the transformations used in Bayesian estimation.

Table D.3 presents the prior densities and posterior estimates of model parameters.
Figure D.1 plots the impulse-response functions of endogenous variables to various

shocks given the estimatedmodel parameters.
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Table D.1. Description of data.

Data Mnemonic Frequency Transform

Real gross domestic product per capita A939RX0Q048SBEA Q —

Share of GDP: personal consumption expenditures: nondurable goods DNDGREI1Q156NBEA Q —

Share of GDP: personal consumption expenditures: services DSERREI1Q156NBEA Q —

Share of GDP: personal consumption expenditures: durable goods DDURREI1Q156NBEA Q —

Share of GDP: gross private domestic investment A006REI1Q156NBEA Q —

Nonfarm business sector: average weekly hours PRS85006023 Q —

Civilian employment level CE16OV M EoP

Civilian non-institutional population CNP16OV M EoP

Gross domestic product: implicit price deflator GDPDEF Q —

Non-farm business sector: real hourly compensation for all workers COMPRNFB Q —

Effective federal funds rate FEDFUNDS M Ave

Note: Q: quarterly, M: monthly, EoP: end of period, Ave: quarterly average.

Table D.2. Variables used in Bayesian estimation.

Variable Definition

Real GDP per capita 𝑌 = 100 × log(A939RX0Q048SBEA)
Real consumption per capita 𝐶 = 100 × log((DNDGREI1Q156NBEA +DSERREI1Q156NBEA) × A939RX0Q048SBEA)
Real investment per capita 𝐼 = 100 × log((DDURREI1Q156NBEA + A006REI1Q156NBEA) × A939RX0Q048SBEA)
Hours worked 𝐿 = 100 × log(PRS85006023 × CE16OV/CNP16OV)
Inflation rate 𝜋 = 100 × log(GDPDEF/GDPDEF(−1))
Real wage 𝑤 = 100 × log(COMPRNFB)
Interest rate 𝑅 = FEDFUNDS/4

9



Table D.3. Prior densities and posterior estimates.

Prior distribution Posterior mode

Coeff. Description Distr. Mean Std. Dev. 1d RE

𝜈 Inverse Frisch elasticity G 2.00 0.50 1.91
[1.48, 2.46]

0.56
[0.44, 0.71]

𝛼 Capital share N 0.30 0.05 0.28
[0.27, 0.29]

0.28
[0.27, 0.29]

𝜆𝑝 Steady-state price markup B 0.15 0.05 0.50
[0.45, 0.55]

0.41
[0.36, 0.47]

𝜆𝑤 Steady-state wagemarkup B 0.15 0.05 0.11
[0.07, 0.16]

0.21
[0.16, 0.26]

𝜉𝑝 Calvo, prices B 0.50 0.10 0.77
[0.74, 0.79]

0.65
[0.61, 0.68]

𝜉𝑤 Calvo, wages B 0.50 0.10 0.77
[0.72, 0.81]

0.15
[0.11, 0.19]

𝜌𝑅 Taylor-rule smoothing B 0.60 0.20 0.87
[0.83, 0.90]

0.54
[0.48, 0.61]

𝜙𝜋 Taylor rule, inflation N 1.50 0.20 1.07
[1.03, 1.10]

1.67
[1.57, 1.77]

𝜍𝑘 Capital-adjustment cost G 4.00 1.00 1.70
[1.47, 1.98]

1.06
[0.87, 1.29]

𝜌𝑎 Technology shock, AR B 0.60 0.15 0.93
[0.90, 0.95]

0.91
[0.90, 0.93]

𝜌𝑚 Monetary-policy shock, AR B 0.60 0.15 0.30
[0.24, 0.37]

0.26
[0.20, 0.33]

𝜌𝑔 Government-spending shock, AR B 0.60 0.15 0.97
[0.95, 0.98]

0.97
[0.96, 0.98]

𝜌𝑝 Price-markup shock, AR B 0.60 0.15 0.91
[0.87, 0.93]

0.96
[0.95, 0.97]

𝜌𝑤 Wage-markup shock, AR B 0.60 0.15 0.97
[0.96, 0.98]

0.97
[0.96, 0.98]

𝜌𝜓 Preference shock, AR B 0.60 0.15 0.96
[0.94, 0.97]

0.92
[0.90, 0.94]

𝜌𝜇 Investment shock, AR B 0.60 0.15 0.87
[0.85, 0.89]

0.90
[0.88, 0.92]

𝜃𝑝 Price-markup shock, MA B 0.50 0.20 0.41
[0.35, 0.48]

0.22
[0.14, 0.34]

𝜃𝑤 Wage-markup shock, MA B 0.50 0.20 0.64
[0.57, 0.70]

0.32
[0.24, 0.41]

𝜎𝑎 Technology shock, SD IG 0.50 1.00 0.54
[0.51, 0.57]

0.56
[0.53, 0.59]

𝜎𝑚 Monetary-policy shock, SD IG 0.50 1.00 0.22
[0.21, 0.23]

0.31
[0.29, 0.35]

𝜎𝑔 Government-spending shock, SD IG 0.50 1.00 1.53
[1.46, 1.61]

1.52
[1.45, 1.60]

𝜎𝑝 Price-markup shock, SD IG 0.50 1.00 0.26
[0.24, 0.27]

0.23
[0.20, 0.27]

𝜎𝑤 Wage-markup shock, SD IG 0.50 1.00 0.42
[0.39, 0.45]

0.91
[0.72, 1.15]

𝜎𝜓 Preference shock, SD IG 0.50 1.00 0.56
[0.53, 0.59]

1.45
[1.21, 1.72]

𝜎𝜇 Investment shock, SD IG 0.50 1.00 5.74
[4.92, 6.70]

4.23
[3.54, 5.05]

Notes: B: beta, G: gamma, IG: inverse gamma, N: normal. 68 percent HPDIs computed using Laplace’s approximation
in brackets.
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Figure D.1. Impulse-response functions.
Notes: Responses of endogenous variables (columns) to one-standard-deviation shocks (rows). One-dimensional simple models. The solid line
represents the posterior mode. Shaded areas are 68 percent HPDIs computed using Laplace’s approximation. Output, consumption, investment,
hours, and real wagemeasured in percents; inflation and nominal interest rates measured in percentage points. Shocks are normalized to increase
output on impact at the posterior mode.
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E Auxiliary Lemmas

Lemma E.1. For any purely non-deterministic, stationary ergodic, and non-degenerate
process with autocorrelationmatrices {𝐶𝑙 }𝑙 , the spectral radii of autocorrelationmatrices
satisfy 𝜌 (𝐶𝑙 ) ≤ 1 for any 𝑙 with the inequality strict for 𝑙 = 1.

Proof. Let 𝜆𝑙 denote an eigenvalue of𝐶𝑙 largest in magnitude and let𝑢𝑙 denote the corre-
sponding eigenvector normalized such that𝑢′

𝑙
𝑢𝑙 = 1. Define the process 𝜔 (𝑙 )

𝑡 ≡ 𝑢′
𝑙
Γ

−1
2
0 𝑦𝑡 ∈

ℝ. Since 𝑦𝑡 is a purely non-deterministic, stationary ergodic, and non-degenerate process,
so is 𝜔 (𝑙 )

𝑡 for any 𝑙 . I first show that 𝜆𝑙 is the autocorrelation of process 𝜔 (𝑙 )
𝑡 at lag 𝑙 . Note

that

𝔼[𝜔 (𝑙 )
𝑡 𝜔

(𝑙 )
𝑡−𝑙 ] = 𝑢

′
𝑙Γ

−1
2
0 𝔼[𝑦𝑡 𝑦 ′𝑡−𝑙 ]Γ

−1
2
0 𝑢𝑙 = 𝑢

′
𝑙Γ

−1
2
0 Γ𝑙Γ

−1
2
0 𝑢𝑙 = 𝑢

′
𝑙Γ

−1
2
0

(
Γ𝑙 + Γ′

𝑙

2

)
Γ

−1
2
0 𝑢𝑙 = 𝑢

′
𝑙𝐶𝑙𝑢𝑙 = 𝜆𝑙 ,

where the first, second, and fourth equalities are by definition, the last equality uses the
fact that 𝜆𝑙 is the eigenvalue of𝐶𝑙 with eigenvector𝑢𝑙 , normalized such that𝑢′

𝑙
𝑢𝑙 = 1, and

the third equality uses the fact that, since𝑢′
𝑙
Γ

−1
2
0 Γ𝑙Γ

−1
2
0 𝑢𝑙 is a scalar and Γ

−1
2
0 is a symmetric

matrix,

𝑢′
𝑙Γ

−1
2
0 Γ′𝑙Γ

−1
2
0 𝑢𝑙 =

(
𝑢′
𝑙Γ

−1
2
0 Γ𝑙Γ

−1
2
0 𝑢𝑙

)′
= 𝑢′

𝑙Γ
−1
2
0 Γ𝑙Γ

−1
2
0 𝑢𝑙 .

On the other hand,

𝔼[𝜔 (𝑙 )
𝑡 𝜔

(𝑙 )
𝑡 ] = 𝑢′

𝑙Γ
−1
2
0 𝔼[𝑦𝑡 𝑦 ′𝑡 ]Γ

−1
2
0 𝑢𝑙 = 𝑢

′
𝑙Γ

−1
2
0 Γ0Γ

−1
2
0 𝑢𝑙 = 𝑢

′
𝑙𝑢𝑙 = 1.

Therefore, since 𝜔 (𝑙 )
𝑡 is purely non-deterministic, stationary ergodic, and non-degenerate,

𝜌 (𝐶𝑙 ) = |𝜆𝑙 | =
𝔼[𝜔 (𝑙 )

𝑡 𝜔
(𝑙 )
𝑡−𝑙 ]

𝔼[𝜔 (𝑙 )
𝑡 𝜔

(𝑙 )
𝑡 ]

≤ 1.

Next, toward a contradiction suppose that 𝜌 (𝐶1) = 1. Then 𝜔 (1)
𝑡 is perfectly correlated

with 𝜔 (1)
𝑡−1, and so, with 𝜔

(1)
𝑡−𝑙 for every 𝑙 , contradicting the assumption that 𝜔 (1)

𝑡 is purely
non-deterministic, stationary ergodic, and non-degenerate. □

Lemma E.2. If ℙ is purely non-deterministic and stationary ergodic, then so is 𝑃 𝜃 for any
pseudo-true one-state model 𝜃 .

Proof. Define

𝐶 (𝑎,𝜂) ≡
∞∑︁
𝜏=1

𝑎𝜏𝜂𝜏−1𝐶𝜏 . (E.1)
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Then
𝜆max(Ω(𝑎,𝜂)) = −𝑎

2(1 −𝜂)2
1 − 𝑎2𝜂2

+ 2(1 −𝜂) (1 − 𝑎2𝜂)
1 − 𝑎2𝜂2

𝜆max(𝐶 (𝑎,𝜂)), (E.2)

where 𝜆max(𝐶 (𝑎,𝜂)) denotes the largest eigenvalue of𝐶 (𝑎,𝜂). To simplify the exposition,
I prove the result under the assumption that the largest eigenvalue of𝐶 (𝑎,𝜂) is simple at
the point (𝑎∗,𝜂∗) that maximizes 𝜆max(Ω(𝑎,𝜂)).7 The partial derivatives of 𝜆max(Ω(𝑎,𝜂))
with respect to 𝑎 and𝜂 are given by

𝜕𝜆max(Ω(𝑎,𝜂))
𝜕𝑎

=
−2𝑎 (1 −𝜂)2(
1 − 𝑎2𝜂2

)2 − 4𝑎𝜂 (1 −𝜂)2(
1 − 𝑎2𝜂2

)2 𝜆max(𝐶 )

+ 2(1 −𝜂) (1 − 𝑎2𝜂)
1 − 𝑎2𝜂2

𝑢′
max(𝐶 )

𝜕𝐶

𝜕𝑎
𝑢max(𝐶 ), (E.3)

𝜕𝜆max(Ω(𝑎,𝜂))
𝜕𝜂

=
2𝑎2(1 −𝜂) (1 − 𝑎2𝜂)(

1 − 𝑎2𝜂2
)2 −

2
(
1 + 𝑎4𝜂2 + 𝑎2(1 − 4𝜂 +𝜂2)

)(
1 − 𝑎2𝜂2

)2 𝜆max(𝐶 )

+ 2(1 −𝜂) (1 − 𝑎2𝜂)
1 − 𝑎2𝜂2

𝑢′
max(𝐶 )

𝜕𝐶

𝜕𝜂
𝑢max(𝐶 ), (E.4)

where𝑢max(𝐶 ) denotes the eigenvector of𝐶 with eigenvalue 𝜆max(𝐶 ), normalized such
that𝑢′

max(𝐶 )𝑢max(𝐶 ) = 1, and

𝜕𝐶

𝜕𝑎
=

∞∑︁
𝜏=1

𝜏𝑎𝜏−1𝜂𝜏−1𝐶𝜏 ,

𝜕𝐶

𝜕𝜂
=

∞∑︁
𝜏=1

(𝜏 − 1)𝑎𝜏𝜂𝜏−2𝐶𝜏 .

Note that
𝜂𝑢′

max(𝐶 )
𝜕𝐶

𝜕𝜂
𝑢max(𝐶 ) + 𝜆max(𝐶 ) = 𝑎𝑢′

max(𝐶 )
𝜕𝐶

𝜕𝑎
𝑢max(𝐶 ) (E.5)

for any 𝑎 and𝜂.
Let 𝑎∗ and𝜂∗ be scalars in the [−1, 1] and [0, 1] intervals, respectively, that maximize

𝜆max(Ω(𝑎,𝜂)). I separately consider the cases𝜂∗ = 1 and𝜂∗ < 1. If𝜂∗ = 1, then 𝐵 = 0 in the
representation in the proof of Theorem 2, the pseudo-true one-state model is i.i.d., and
𝐴 = 𝑎∗ can be chosen arbitrarily to satisfy |𝑎∗ | < 1.8

In the rest of the proof, I assume that𝜂∗ < 1 and show that this implies 𝑎∗ ≠ 1—by a
similar argument 𝑎∗ ≠ −1. Toward a contradiction, suppose 𝑎∗ = 1. Setting 𝑎 = 1 in the

7The argument can easily be adapted to the case where the largest eigenvalue of 𝐶 (𝑎∗,𝜂∗) is not
necessarily simple by replacing the gradient of 𝜆max (𝐶 (𝑎,𝜂)) with its subdifferential and replacing the
usual first-order optimality condition with the condition that the zero vector belongs to the subdifferential.

8The pseudo-true one-state model then has a zero-state minimal representation.
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partial derivatives of 𝜆max(Ω(𝑎,𝜂)), I get

𝜕𝜆max(Ω(𝑎,𝜂))
𝜕𝑎

����
𝑎=1

=
2(1 −𝜂)2(
1 −𝜂2

)2 [
−1 − 2𝜂𝜆max(𝐶 ) + (1 −𝜂2)𝑢′

max(𝐶 )
𝜕𝐶

𝜕𝑎
𝑢max(𝐶 )

]
,

𝜕𝜆max(Ω(𝑎,𝜂))
𝜕𝜂

����
𝑎=1

=
2(1 −𝜂)2(
1 −𝜂2

)2 [
1 − 2𝜆max(𝐶 ) + (1 −𝜂2)𝑢′

max(𝐶 )
𝜕𝐶

𝜕𝜂
𝑢max(𝐶 )

]
,

where𝐶 = 𝐶 (1,𝜂) and its partial derivatives are computed at𝑎 = 1. Multiplying the second
equation above by𝜂 and subtracting from it the first equation, I get

𝜂
𝜕𝜆max(Ω(𝑎,𝜂))

𝜕𝜂

����
𝑎=1

− 𝜕𝜆max(Ω(𝑎,𝜂))
𝜕𝑎

����
𝑎=1

=
2(1 −𝜂)2(
1 −𝜂2

)2 [
1 +𝜂 + (1 −𝜂2)

(
𝜂𝑢′

max(𝐶 )
𝜕𝐶

𝜕𝜂
𝑢max(𝐶 ) − 𝑢′

max(𝐶 )
𝜕𝐶

𝜕𝑎
𝑢max(𝐶 )

)]
=
2(1 −𝜂)2(
1 −𝜂2

)2 [
1 +𝜂 − (1 −𝜂2)𝜆max(𝐶 )

]
,

where in the second equality I am using identity (E.5). Therefore,

𝜕𝜆max(Ω(𝑎,𝜂))
𝜕𝑎

����
𝑎=1

= 𝜂
𝜕𝜆max(Ω(𝑎,𝜂))

𝜕𝜂

����
𝑎=1

− 2(1 −𝜂)2(
1 −𝜂2

)2 (
1 +𝜂 − (1 −𝜂2)𝜆max(𝐶 (1,𝜂))

)
.

Note that

𝜆max(𝐶 (1,𝜂)) ≤
∞∑︁
𝜏=1

𝜂𝜏−1𝜆max(𝐶𝜏 ) <
∞∑︁
𝜏=1

𝜂𝜏−1 =
1

1 −𝜂 ,

where the second inequality is by Lemma E.1. Therefore,

−2(1 −𝜂)
2(

1 −𝜂2
)2 (

1 +𝜂 − (1 −𝜂2)𝜆max(𝐶 (1,𝜂))
)
<
2(1 −𝜂)2(
1 −𝜂2

)2 (1 +𝜂 − 1 −𝜂) = 0.

On the other hand, by the optimality of 𝑎∗ = 1 and𝜂∗ < 1,

𝜕𝜆max(Ω(𝑎,𝜂))
𝜕𝜂

����
𝑎∗=1,𝜂=𝜂∗

≤ 0.

Thus,
𝜕𝜆max(Ω(𝑎,𝜂))

𝜕𝑎

����
𝑎∗=1,𝜂=𝜂∗

< 0,

a contradiction to the assumption of optimality of 𝑎∗ = 1 and 𝜂∗ < 1. This proves that
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𝑎∗ < 1 and establishes that the one-state model with 𝑎 = 𝑎∗ and 𝜂 = 𝜂∗ is purely non-
deterministic and stationary ergodic. □

LemmaE.3. AnyMarkovianmodel 𝜃 has a representationas inLemma2 forwhich𝐷′𝐷 = 𝐼 .

Proof. Fix a Markovian model 𝜃 , and let 𝑀 , 𝐷 , and 𝑁 be as in Lemma 2. By (16), the
𝑠-step-ahead forecast under model 𝜃 is given by

𝐸 𝜃𝑡 [𝑦𝑡+𝑠 ] = 𝑁 ′−1𝐷𝑀 𝑠−1
∞∑︁
𝜏=0

(𝑀 (𝐼 −𝐷′𝐷))𝜏 𝑀𝐷′𝑁 ′𝑦𝑡−𝜏 .

Since 𝜃 is Markovian and 𝑁 is invertible, 𝐷 (𝑀 (𝐼 −𝐷′𝐷))𝜏 𝑀𝐷′ = 0 for all 𝜏 ≥ 1. As
the first step of the proof, I use this identity and an inductive argument to show that
𝐷𝑀 𝑠𝐷′ = (𝐷𝑀𝐷′)𝑠 for all 𝑠 ≥ 2. The following equation establishes the induction base:

0 = 𝐷 (𝑀 (𝐼 −𝐷′𝐷))𝑀𝐷′ = 𝐷𝑀 2𝐷′ −𝐷𝑀𝐷′𝐷𝑀𝐷′.

As the induction hypothesis, suppose𝐷𝑀 𝑠𝐷′ = (𝐷𝑀𝐷′)𝑠 for some 𝑠 ≥ 2. Note that

𝐷 (𝑀 (𝐼 −𝐷′𝐷))𝑠 𝑀𝐷′ = 𝐷 (𝑀 (𝐼 −𝐷′𝐷))𝑠−1𝑀 (𝐼 −𝐷′𝐷)𝑀𝐷′

= 𝐷 (𝑀 (𝐼 −𝐷′𝐷))𝑠−1𝑀 2𝐷′,

where the last equality follows the fact that𝐷 (𝑀 (𝐼 −𝐷′𝐷))𝑠−1𝑀𝐷′ = 0 for any 𝑠 ≥ 2. By
a similar argument,

𝐷 (𝑀 (𝐼 −𝐷′𝐷))𝑠 𝑀𝐷′ = 𝐷 (𝑀 (𝐼 −𝐷′𝐷))𝑠−2𝑀 3𝐷′ = · · · = 𝐷 (𝑀 (𝐼 −𝐷′𝐷))𝑀 𝑠𝐷′.

Therefore, by the induction hypothesis,

𝐷 (𝑀 (𝐼 −𝐷′𝐷))𝑠 𝑀𝐷′ = 𝐷𝑀 𝑠+1𝐷′ −𝐷𝑀𝐷′𝐷𝑀 𝑠𝐷′ = 𝐷𝑀 𝑠+1𝐷′ − (𝐷𝑀𝐷′)𝑠+1.

The assumption that𝐷 (𝑀 (𝐼 −𝐷′𝐷))𝑠𝑀𝐷′ = 0 then proves the induction step.
I next find a model 𝜃 , represented by matrices 𝑀̃ , 𝐷̃ , and 𝑁̃ , that is observationally

equivalent to 𝜃 and for which 𝐷̃′𝐷̃ = 𝐼 . Since𝐷 ∈ ℝ𝑛×𝑑 is a rectangular diagonal matrix

and 𝑑 ≤ 𝑛, 𝐷𝑀𝐷′ =

(
𝑀1 0
0 0

)
for some 𝑑 × 𝑑 matrix𝑀1. Let 𝑀̃ = 𝑀1, 𝐷̃ ∈ ℝ𝑛×𝑑 be the

rectangular diagonal matrix with its diagonal elements equal to one, and 𝑁̃ = 𝑁 . Then
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𝐷̃′𝐷̃ = 𝐼 . Furthermore,

𝐷𝑀 𝑠𝐷′ = (𝐷𝑀𝐷′)𝑠 =
(
𝑀 𝑠

1 0
0 0

)
= 𝐷̃𝑀̃ 𝑠𝐷̃′.

By equation (16), the forecasts are identical under the twomodels:

𝐸 𝜃𝑡 [𝑦𝑡+𝑠 ] = 𝑁 ′−1𝐷𝑀 𝑠𝐷′𝑁 ′𝑦𝑡 = 𝑁̃
′−1𝐷̃𝑀̃ 𝑠𝐷̃′𝑁̃ ′𝑦𝑡 = 𝐸

𝜃
𝑡 [𝑦𝑡+𝑠 ].

By equation (17), the unconditional variance of the observable is also identical under the
twomodels:

Var𝜃 (𝑦 ) = 𝑁 ′−1
(
𝐼 +

∞∑︁
𝜏=1

𝐷𝑀 𝜏𝐷′𝐷𝑀 ′𝜏𝐷′
)
𝑁 −1

= 𝑁̃ ′−1
(
𝐼 +

∞∑︁
𝜏=1

𝐷̃𝑀̃ 𝜏𝐷̃′𝐷̃𝑀̃ ′𝜏 𝐷̃′
)
𝑁̃ −1 = Var𝜃 (𝑦 ).

On the other hand,

𝐸 𝜃 [𝑦𝑡+𝑠𝑦 ′𝑡 ] = 𝐸 𝜃 [𝐸 𝜃𝑡 [𝑦𝑡+𝑠 ]𝑦 ′𝑡 ] = 𝑁 ′−1𝐷𝑀 𝑠𝐷′𝑁 ′𝐸 𝜃 [𝑦𝑡 𝑦 ′𝑡 ] = 𝑁 ′−1𝐷𝑀 𝑠𝐷′𝑁 ′Var𝜃 (𝑦 ),

and similarly for 𝐸 𝜃 [𝑦𝑡+𝑠𝑦 ′𝑡 ]. Therefore, 𝐸 𝜃 [𝑦𝑡+𝑠𝑦 ′𝑡 ] = 𝐸 𝜃 [𝑦𝑡+𝑠𝑦 ′𝑡 ] for all 𝑠 ; that is, 𝑃 𝜃 and 𝑃 𝜃

also have identical autocovariance matrices at all lags. This conclusion, together with
the fact that 𝑃 𝜃 and 𝑃 𝜃 are both zero-mean Gaussian distributions, implies that they are
observationally equivalent. □

F Omitted Proofs

Proof of Claim 1. The first-order optimality condition with respect to 𝑆 is given by

𝑆′𝑆 − 𝑒1𝑒 ′1𝑆
′Ω𝑆 = 𝐼 . (F.1)

Multiplying the transpose of the above equation from right by 𝑒1 and from left by 𝑆′−1, I
get

𝑆𝑒1 − Ω𝑆𝑒1 = 𝑆
′−1𝑒1. (F.2)
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On the other hand, multiplying equation (F.1) from left by 𝑆 and from right by 𝑆−1, I get

𝑆𝑆′ = 𝐼 + 𝑆𝑒1𝑒 ′1𝑆
′Ω. (F.3)

By the Sherman–Morrison formula,

𝑆′−1𝑆−1 = 𝐼 −
𝑆𝑒1𝑒

′
1𝑆

′Ω

1 + 𝑒 ′1𝑆′Ω𝑆𝑒1
.

Multiplying the above equation from right by 𝑆𝑒1, I get

𝑆′−1𝑒1 =
1

1 + 𝑒 ′1𝑆′Ω𝑆𝑒1
𝑆𝑒1. (F.4)

Substituting for 𝑆′−1𝑒1 from the above equation in (F.2) and rearranging the terms, I get

Ω𝑆𝑒1 =
𝑒 ′1𝑆

′Ω𝑆𝑒1

1 + 𝑒 ′1𝑆′Ω𝑆𝑒1
𝑆𝑒1. (F.5)

That is, 𝑆𝑒1 is an eigenvector of Ω. Let 𝜆 denote the corresponding eigenvalue and let
𝑢 = 𝑆𝑒1/

√︁
𝑒 ′1𝑆

′𝑆𝑒1. Then equation (F.5) implies

𝜆 =
𝜆𝑒 ′1𝑆

′𝑆𝑒1

1 + 𝜆𝑒 ′1𝑆′𝑆𝑒1
.

I separately consider the cases 𝜆 ≠ 0 and 𝜆 = 0. If 𝜆 ≠ 0, then 𝑒 ′1𝑆
′𝑆𝑒1 = 1/(1 − 𝜆) and

𝑆𝑒1 = 𝑢/
√
1 − 𝜆. Equation (F.4) then implies that 𝑆′−1𝑒1 =

√
1 − 𝜆𝑢 , and equation (F.3)

implies that 𝑆𝑆′ = 𝐼 + 𝜆
1−𝜆𝑢𝑢

′. If 𝜆 = 0, then equation (F.2) implies that 𝑆𝑒1 = 𝑆′−1𝑒1, and
so, 𝑆𝑒1 and 𝑆′−1𝑒1 are both multiples of 𝑢 . Furthermore, 𝑒 ′1𝑆

−1𝑆𝑒1 = 𝑒 ′1𝑒1 = 1. Therefore,
𝑆𝑒1 = 𝑆

′−1𝑒1 = 𝑢 . On the other hand, equation (F.3) implies that 𝑆𝑆′ = 𝐼 . This completes
the proof of the claim. □

Proof of Theorem 3. Setting𝑀 = 𝑎 ,𝐷 =
√︁
1 −𝜂𝑒1, and𝑁 = Γ

−1
2
0 𝑆 in equation (17), I get

Var𝜃 (𝑦 ) = Γ
1
2
0

[
𝐼 + 1

1 − 𝑎2
[
𝑎2(1 −𝜂)2 −

(
1 − 2𝑎2𝜂 + 𝑎2𝜂2

)
𝜆
]
𝑢𝑢′

]
Γ
1
2
0 ,

where 𝑎 ,𝜂, 𝜆 = 𝜆max(Ω(𝑎,𝜂)), and 𝑢 are as in Theorem 2. Substituting for 𝜆max(Ω(𝑎,𝜂))
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from equation (E.2) in the above equation, I get

Var𝜃 (𝑦𝑡 ) = Γ
1
2
0

[
𝐼 + 2(1 −𝜂) (1 − 𝑎2𝜂)

(1 − 𝑎2) (1 − 𝑎2𝜂2)

(
𝑎2(1 −𝜂) − (1 − 2𝑎2𝜂 + 𝑎2𝜂2)𝜆max(𝐶 )

)
𝑢𝑢′

]
Γ
1
2
0 .

(F.6)
Let 𝑎∗ and 𝜂∗ be scalars in the [−1, 1] and [0, 1] intervals, respectively, that maximize
𝜆max(Ω(𝑎,𝜂)). I separately consider the cases 𝜂∗ = 1 and 𝜂∗ < 1. If 𝜂∗ = 1, then the
right-hand side of equation (F.6) is equal to Γ0.

Next suppose 𝜂∗ < 1. By the argument in the proof of Lemma E.2, the first-order
optimality condition with respect to 𝑎 must hold with equality at 𝑎 = 𝑎∗ and𝜂 = 𝜂∗ < 1.
Setting 𝜕𝜆max(Ω(𝑎,𝜂))/𝜕𝑎 = 0 in (E.3) andmultiplying both sides of the equation by 𝑎∗, I
get, using (E.5),

2𝑎∗2(1 −𝜂∗)2(
1 − 𝑎∗2𝜂∗2)2 + 4𝑎∗2𝜂∗(1 −𝜂∗)2(

1 − 𝑎∗2𝜂∗2)2 𝜆max(𝐶 )

=
2(1 −𝜂∗) (1 − 𝑎∗2𝜂∗)

1 − 𝑎∗2𝜂∗2 𝜆max(𝐶 ) +
2(1 −𝜂∗) (1 − 𝑎∗2𝜂∗)

1 − 𝑎∗2𝜂∗2 𝜂∗𝑢′
max(𝐶 )

𝜕𝐶

𝜕𝜂
𝑢max(𝐶 ). (F.7)

Setting𝜂∗ = 0 in the above equation, I get𝑎∗2 = 𝜆max(𝐶 ). Setting𝑎∗2 = 𝜆max(𝐶 ) in equation
(F.6) then establishes that Var𝜃 (𝑦𝑡 ) = Γ0 in the case where𝜂∗ = 0.

Finally, I consider the case where𝜂∗ ∈ (0, 1). Then additionally the first-order optimal-
ity condition with respect to𝜂 must hold with equality. Setting 𝜕𝜆max(Ω(𝑎,𝜂))/𝜕𝜂 = 0 in
equation (E.4), multiplying it by𝜂∗, solving for𝜂∗𝑢′

max(𝐶 ) 𝜕𝐶𝜕𝜂𝑢max(𝐶 ), and substituting in
equation (F.7), I get

2𝑎∗2(1 −𝜂∗)2(
1 − 𝑎∗2𝜂∗2)2 + 4𝑎∗2𝜂∗(1 −𝜂∗)2(

1 − 𝑎∗2𝜂∗2)2 𝜆max(𝐶 )

=
2(1 −𝜂∗) (1 − 𝑎∗2𝜂∗)

1 − 𝑎∗2𝜂∗2 𝜆max(𝐶 ) −
2𝑎∗2𝜂∗(1 −𝜂∗) (1 − 𝑎∗2𝜂∗)(

1 − 𝑎∗2𝜂∗2)2
+
2𝜂∗

(
1 + 𝑎∗4𝜂∗2 + 𝑎∗2(1 − 4𝜂∗ +𝜂∗2)

)
(
1 − 𝑎∗2𝜂∗2)2 𝜆max(𝐶 ).

Simplifying the above expression leads to

𝑎∗2(1 −𝜂∗) =
(
1 − 2𝑎∗2𝜂∗ + 𝑎∗2𝜂∗2

)
𝜆max(𝐶 ).

Combining the above identity with equation (F.6) implies that Var𝜃 (𝑦𝑡 ) = Γ0 and finishes
the proof of the theorem. □
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Proof of Proposition 2. By equation (12),

Var𝜃𝑡 (𝑦𝑡+1) = 𝐵′Σ̂𝑧𝐵 + 𝑅,

where Σ̂𝑧 solves the algebraic Riccati equation (13). The equation can be written as

Σ̂𝑧 = 𝐴Σ̂
1
2
𝑧

(
𝐼 − Σ̂

1
2
𝑧 𝐵

(
𝐵′Σ̂𝑧𝐵 + 𝑅

)−1
𝐵′Σ̂

1
2
𝑧

)
Σ̂

1
2
𝑧 𝐴

′ +𝑄. (F.8)

Since 𝑅 is a positive semidefinite matrix, so is 𝐼 − Σ̂
1
2
𝑧 𝐵

(
𝐵′Σ̂𝑧𝐵 + 𝑅

)−1
𝐵′Σ̂

1
2
𝑧 . Therefore,

Σ̂𝑧 ⪰ 𝑄 , and so, Var𝜃𝑡 (𝑦𝑡+1) ⪰ 𝐵′𝑄𝐵 + 𝑅 . On the other hand,

Var𝜃 (𝑦𝑡+1 |𝑧𝑡 ) = 𝐵′Var𝜃 (𝑧𝑡+1 |𝑧𝑡 )𝐵 + 𝑅 = 𝐵′𝑄𝐵 + 𝑅,

where I am using the assumption that𝑤𝑡 is i.i.d. N(0,𝑄 ), 𝑣𝑡 is i.i.d. N(0, 𝑅), and𝑤𝑡 and 𝑣𝑡
are independent. This proves the first part of the proposition.

To prove the second part, first assume that Var𝜃𝑡 (𝑦𝑡+1) = 𝐵′𝑄𝐵 + 𝑅 . Together with
equation (F.8), this implies that

𝐵′𝐴Σ̂
1
2
𝑧

(
𝐼 − Σ̂

1
2
𝑧 𝐵

(
𝐵′Σ̂𝑧𝐵 + 𝑅

)−1
𝐵′Σ̂

1
2
𝑧

)
Σ̂

1
2
𝑧 𝐴

′𝐵 = 0.

Since
(
𝐼 − Σ̂

1
2
𝑧 𝐵

(
𝐵′Σ̂𝑧𝐵 + 𝑅

)−1
𝐵′Σ̂

1
2
𝑧

)
is a symmetric positive semidefinite matrix, the above

equation implies that

𝐵′𝐴Σ̂
1
2
𝑧

(
𝐼 − Σ̂

1
2
𝑧 𝐵

(
𝐵′Σ̂𝑧𝐵 + 𝑅

)−1
𝐵′Σ̂

1
2
𝑧

)
= 0.

On the other hand, by equation (14), the one-step-ahead forecast under model 𝜃 is given
by

𝐸 𝜃𝑡 [𝑦𝑡+1] = 𝐵′
∞∑︁
𝜏=0

(𝐴 − 𝐾 𝐵′)𝜏𝐾 𝑦𝑡−𝜏 .

Substituting for 𝐾 from equation (11), I get

𝐵′(𝐴 − 𝐾 𝐵′) = 𝐵′
(
𝐴 − 𝐴Σ̂𝑧𝐵

(
𝐵′Σ̂𝑧𝐵 + 𝑅

)−1
𝐵′

)
= 𝐵′𝐴Σ̂

1
2
𝑧

(
𝐼 − Σ̂

1
2
𝑧 𝐵

(
𝐵′Σ̂𝑧𝐵 + 𝑅

)−1
𝐵′Σ̂

1
2
𝑧

)
Σ̂

−1
2
𝑧 = 0.
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Therefore,

𝐸 𝜃𝑡 [𝑦𝑡+1] = 𝐵′
∞∑︁
𝜏=0

(𝐴 − 𝐾 𝐵′)𝜏𝐾 𝑦𝑡−𝜏 = 𝐵′𝐾 𝑦𝑡 .

On the other hand, Var𝜃𝑡 (𝑦𝑡+1) = 𝐵′Σ̂𝑧𝐵 + 𝑅 . Under model 𝜃 , the mean and variance of
𝑦𝑡+1 conditional on {𝑦𝜏 }𝜏≤𝑡 are both independent of {𝑦𝜏 }𝜏<𝑡 . Furthermore, 𝑃 𝜃 is Gaussian.
Therefore, it is Markovian.

Next, suppose 𝑃 𝜃 is Markovian. Then by Lemma E.3, model 𝜃 has a representation as
in Lemma 2 for which𝐷′𝐷 = 𝐼 . By equation (18), then

Σ̂
1
2
𝑧 𝐵

(
𝐵′Σ̂𝑧𝐵 + 𝑅

)−1
𝐵′Σ̂

1
2
𝑧 =𝑉𝐷′𝐷𝑉 ′ = 𝐼 ,

where the second equality follows the facts that𝐷′𝐷 = 𝐼 and𝑉 is orthogonal. Substituting
in equation (F.8), I get Σ̂𝑧 = 𝑄 . Therefore, Var𝜃𝑡 (𝑦𝑡+1) = 𝐵′Σ̂𝑧𝐵 + 𝑅 = 𝐵′𝑄𝐵 + 𝑅 . □

Proof of Theorem 5. By Lemma 2, the agent’s model can be represented in terms of matri-
ces𝑀 ,𝐷 , and𝑁 . Since the agent is restricted to the set of Markovianmodels, by Lemma
E.3, I can set𝐷 = (𝐼 0)′. Let 𝑆 ≡ Γ

1
2
0𝑁 and Γ ≡ Γ

−1
2
0 Γ1Γ

−1
2
0 . The expression for the KLDR in

(15) then simplifies to

−1
2
log det (𝑆𝑆′) + 1

2
tr (𝑆′𝑆) − tr (𝑀𝐷′𝑆′Γ𝑆𝐷) + 1

2
tr (𝑀𝐷′𝑆′𝑆𝐷𝑀 ′) ,

plus a constant that does not depend on (𝑀,𝑆,𝐷). Write 𝑆 = (𝑆1 𝑆2), where 𝑆1 ∈ ℝ𝑛×𝑑 and
𝑆2 ∈ ℝ𝑛×(𝑛−𝑑). The above expression can then be written as

−1
2
log det

(
𝑆1𝑆

′
1 + 𝑆2𝑆

′
2
)
+ 1
2
tr

(
𝑆′1𝑆1

)
+ 1
2
tr

(
𝑆′2𝑆2

)
− tr

(
𝑀𝑆′1Γ𝑆1

)
+ 1
2
tr

(
𝑀𝑆′1𝑆1𝑀

′) .
I next optimize the above expression with respect to𝑀 , 𝑆1, and 𝑆2. The first-order

optimality condition with respect to 𝑆2 is given by
(
𝑆1𝑆

′
1 + 𝑆2𝑆

′
2
)−1

𝑆2 = 𝑆2, which can be
rewrittenas𝑆1𝑆′1𝑆2+𝑆2(𝑆

′
2𝑆2−𝐼 ) = 0. Let𝑏0 beanarbitrary vector inℝ

𝑛−𝑑 ,𝑏1 ≡ 𝑆′1𝑆2𝑏0 ∈ ℝ𝑑 ,
and 𝑏2 ≡ (𝑆′2𝑆2 − 𝐼 )𝑏0 ∈ ℝ𝑛−𝑑 . The above equation then implies that

0 =
(
𝑆1𝑆

′
1𝑆2 + 𝑆2(𝑆

′
2𝑆2 − 𝐼 )

)
𝑏0 = 𝑆1𝑏1 + 𝑆2𝑏2 = 𝑆𝑏,

where 𝑏 ≡
(
𝑏′1 𝑏′2

)′
∈ ℝ𝑛 . Since 𝑆 is an invertible matrix, it must be that 𝑏 = 0. Therefore,

20



𝑏1 = 0 and 𝑏2 = 0. Since 𝑏0 was arbitrary, 𝑆′2𝑆2 = 𝐼 and 𝑆
′
1𝑆2 = 0. On the other hand,

log det
(
𝑆1𝑆

′
1 + 𝑆2𝑆

′
2
)
= log det(𝑆𝑆′) = log det(𝑆′𝑆) = log det

(
𝑆′1𝑆1 𝑆′1𝑆2

𝑆′2𝑆1 𝑆′2𝑆2

)
.

Therefore,

log det
(
𝑆1𝑆

′
1 + 𝑆2𝑆

′
2
)
= log det

(
𝑆′1𝑆1 0
0 𝐼

)
= log det(𝑆′1𝑆1).

The KLDR can thus be written only as a function of𝑀 and 𝑆1 as

−1
2
log det

(
𝑆′1𝑆1

)
+ 1
2
tr

(
𝑆′1𝑆1

)
− tr

(
𝑀𝑆′1Γ𝑆1

)
+ 1
2
tr

(
𝑀𝑆′1𝑆1𝑀

′) , (F.9)

plus a constant. The first-order optimality conditions with respect to𝑀 and 𝑆1 are then
given by

− 𝑆′1Γ
′𝑆1 +𝑀𝑆′1𝑆1 = 0, (F.10)

− 𝑆†1
′ + 𝑆1 − Γ𝑆1𝑀 − Γ′𝑆1𝑀

′ + 𝑆1𝑀 ′𝑀 = 0. (F.11)

Since 𝑆′1𝑆1 is invertible, (F.10) can be solve for𝑀 to get𝑀 = 𝑆′1Γ
′𝑆1(𝑆′1𝑆1)

−1. Substituting
in (F.11), I get

𝑆1(𝑆′1𝑆1)
−1 = 𝑆1 − Γ𝑆1𝑆′1Γ

′𝑆1(𝑆′1𝑆1)
−1 − Γ′𝑆1(𝑆′1𝑆1)

−1𝑆′1Γ𝑆1 + 𝑆1(𝑆
′
1𝑆1)

−1𝑆′1Γ𝑆1𝑆
′
1Γ

′𝑆1(𝑆′1𝑆1)
−1,

(F.12)
where I am using the fact that 𝑆†1 = (𝑆′1𝑆1)

−1𝑆′1. Next consider the singular-value decompo-
sition of 𝑆1:

𝑆1 =𝑈Σ𝑉 ′, (F.13)

where𝑈 ∈ ℝ𝑛×𝑛 and𝑉 ∈ ℝ𝑑×𝑑 are orthogonal matrices, and Σ ∈ ℝ𝑛×𝑑 is a rectangular
diagonal matrix. Substituting for 𝑆1 in (F.12) from (F.13) andmultiplying the result from
left and right by𝑈 ′ and𝑉 Σ′, respectively, I get that Σ(Σ′Σ)−1Σ′ is equal to

ΣΣ′ − 𝑋 ΣΣ′𝑋 ′Σ(Σ′Σ)−1Σ′ − 𝑋 ′Σ(Σ′Σ)−1Σ′𝑋 ΣΣ′ + Σ(Σ′Σ)−1Σ′𝑋 ΣΣ′𝑋 ′Σ(Σ′Σ)−1Σ′,
(F.14)

where 𝑋 ≡ 𝑈 ′Γ𝑈 . Note that Σ =

(
Σ1

0

)
for some diagonal matrix Σ1 ∈ ℝ𝑛×𝑑 . Moreover,

since 𝑆′1𝑆1 is invertible, so is Σ1. Therefore, Σ(Σ
′Σ)−1Σ′ =

(
𝐼 0
0 0

)
and ΣΣ′ =

(
Σ21 0
0 0

)
. Write
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𝑋 =

(
𝑋11 𝑋12

𝑋21 𝑋22

)
, where 𝑋11 ∈ ℝ𝑑×𝑑 , 𝑋12 ∈ ℝ𝑑×(𝑛−𝑑), 𝑋21 ∈ ℝ(𝑛−𝑑)×𝑑 , and 𝑋22 ∈ ℝ(𝑛−𝑑)×(𝑛−𝑑).

Equation (F.14) then implies

𝑋 ′
11𝑋11 = 𝐼 − Σ−2

1 , (F.15)

𝑋21Σ
2
1𝑋

′
11 + 𝑋

′
12𝑋11Σ

2
1 = 0. (F.16)

These equations fully characterize the set of all (local) extrema of the KLDR.
I next use these equations to show that, as long as either 𝑑 is equal to one or Γ1 is

symmetric, and for any 𝑖 = 1, . . . , 𝑑 , the 𝑖 th coordinate vector 𝑒𝑖 ∈ ℝ𝑛 is an eigenvector
of (𝑋 + 𝑋 ′)/2 with eigenvalue 𝑒 ′

𝑖
𝑋𝑒𝑖 .9 If 𝑒 ′𝑖𝑋𝑒𝑖 = 0, then trivially 𝑒𝑖 is an eigenvector of

(𝑋 + 𝑋 ′)/2 with eigenvalue 𝑒 ′
𝑖
𝑋𝑒𝑖 = 0. So in the rest of the proof, I consider the case where

𝑒 ′
𝑖
𝑋𝑒𝑖 ≠ 0. First, suppose 𝑑 = 1. Then 𝑖 = 1 and 𝑋 ′

11 = 𝑋11 = 𝑒
′
1𝑋𝑒1 ≠ 0. On the other hand,

Σ1 is a non-zero scalar. Equation (F.16) then implies that 𝑋21 + 𝑋 ′
12 = 0. Therefore,(

𝑋 + 𝑋 ′

2

)
𝑒1 =

1
2

(
2𝑋11 𝑋12 + 𝑋 ′

21
𝑋21 + 𝑋 ′

12 𝑋22 + 𝑋 ′
22

) (
1
0

)
=

(
𝑋11

0

)
= 𝑒 ′1𝑋𝑒1𝑒1,

proving that 𝑒1 is an eigenvector of (𝑋 + 𝑋 ′)/2 with eigenvalue 𝑒 ′1𝑋𝑒1. Next, suppose Γ1 is
symmetric. This implies that Γ, and by extension, 𝑋 are symmetric matrices. Equation
(F.15) then implies that 𝑋11 is a diagonal matrix. Since Σ1 is also diagonal, it commutes
with 𝑋11. Equation (F.16) then implies that

(𝑋21 + 𝑋 ′
12)𝑋11 = 2𝑋21𝑋11 = 0, (F.17)

where I am using the fact that Σ1 is non-singular and 𝑋 is symmetric. But since 𝑋11 is a
diagonal matrix, it can be written as 𝑋11 =

∑𝑑
𝑘=1 𝑒

′
𝑘
𝑋11𝑒𝑘𝑒𝑘𝑒

′
𝑘
. Substituting in (F.17), I get∑𝑑

𝑘=1 𝑋21𝑒
′
𝑘
𝑋11𝑒𝑘𝑒𝑘𝑒

′
𝑘
= 0. In particular, it must be the case that 𝑋21𝑒 ′𝑖𝑋11𝑒𝑖𝑒𝑖 = 0. But since

𝑒 ′
𝑖
𝑋11𝑒𝑖 = 𝑒

′
𝑖
𝑋𝑒𝑖 ≠ 0, it must be that 𝑋21𝑒𝑖 = 0. Therefore,(

𝑋 + 𝑋 ′

2

)
𝑒𝑖 =

(
𝑋11 𝑋12

𝑋21 𝑋22

) (
𝑒𝑖

0

)
=

(
𝑋11𝑒𝑖

𝑋21𝑒𝑖

)
=

(
𝑒 ′
𝑖
𝑋11𝑒𝑖𝑒𝑖

0

)
= 𝑒 ′𝑖𝑋𝑒𝑖𝑒𝑖 ,

where the third equality relies on the fact that 𝑋11 is diagonal. This proves that 𝑒𝑖 is an
eigenvector of (𝑋 + 𝑋 ′)/2 with eigenvalue 𝑒 ′

𝑖
𝑋𝑒𝑖𝑒𝑖 .

I next show that anymatrices𝑀 and𝑆1 that satisfy the first-order optimality conditions
9With slight abuse of notation, I use 𝑒𝑖 to denote the 𝑖 th coordinate vector both inℝ𝑛 and inℝ𝑑 . Whether

𝑒𝑖 ∈ ℝ𝑛 or 𝑒𝑖 ∈ ℝ𝑑 will be clear from the context.
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(F.10) and (F.11) must be of the form

𝑀 =

𝑑∑︁
𝑖=1

𝑎𝑖𝑣𝑖𝑣
′
𝑖 , (F.18)

𝑆1 =
𝑑∑︁
𝑖=1

1√︃
1 − 𝑎2

𝑖

𝑢𝑖𝑣
′
𝑖 , (F.19)

where {𝑎𝑖 }𝑑𝑖=1 are eigenvalues of𝐶1, 𝑢𝑖 ∈ ℝ𝑛 denotes an eigenvector with eigenvalue 𝑎𝑖
normalized such that𝑢′

𝑖
𝑢𝑘 = 1{𝑖=𝑘 } for all 𝑖 , 𝑘 ∈ {1, . . . , 𝑑}, and {𝑣𝑖 }𝑑𝑖=1 is an orthonormal

basis for ℝ𝑑 . To see this, first note that equation (F.13) can be written as 𝑆1 = 𝑈Σ𝑉 ′ =

𝑈
∑
𝑖=1𝑑 𝜎𝑖𝑒𝑖𝑒

′
𝑖
𝑉 ′, where 𝜎𝑖 denotes the 𝑖 th diagonal element of Σ ∈ ℝ𝑛×𝑑 . I let 𝑢𝑖 ≡ 𝑈𝑒𝑖

and 𝑣𝑖 ≡ 𝑉 𝑒𝑖 . Since 𝑈 and 𝑉 are orthogonal matrices, {𝑢𝑖 }𝑑𝑖=1 is a set of orthonormal
vectors and {𝑣𝑖 }𝑑𝑖=1 is an orthonormal basis for ℝ𝑑 . Therefore, to show that 𝑆1 takes the
form given in (F.19), I only need to show that𝑢𝑖 is an eigenvector of𝐶1 with eigenvalue 𝑎𝑖
and 𝜎𝑖 = 1/

√︃
1 − 𝑎2

𝑖
. Note that

𝐶1𝑢𝑖 =
1
2
(Γ + Γ′)𝑈𝑒𝑖 =

1
2
𝑈𝑈 ′ (Γ + Γ′)𝑈𝑒𝑖 =𝑈

(
𝑋 + 𝑋 ′

2

)
𝑒𝑖 =𝑈𝑒

′
𝑖𝑋𝑒𝑖𝑒𝑖 = 𝑒

′
𝑖𝑋𝑒𝑖𝑢𝑖 ,

where the fourth equality uses the fact that 𝑒𝑖 is an eigenvector of (𝑋 + 𝑋 ′)/2. Therefore,
𝑢𝑖 is an eigenvector of𝐶1. On the other hand, multiplying equation (F.15) from left and
right by 𝑒 ′

𝑖
and 𝑒𝑖 , respectively, for 𝑖 ∈ {1, . . . , 𝑑} and using the fact that 𝑋11 is diagonal, I

get
(
𝑒 ′
𝑖
𝑋11𝑒𝑖

)2
= 1 − 𝜎−2

𝑖
. But

𝑒 ′𝑖𝑋11𝑒𝑖 = 𝑒
′
𝑖𝑋𝑒𝑖 = 𝑒

′
𝑖

(
𝑋 + 𝑋 ′

2

)
𝑒𝑖 = 𝑒

′
𝑖𝑈

(
Γ + Γ′

2

)
𝑈𝑒𝑖 = 𝑢

′
𝑖𝐶1𝑢𝑖 = 𝑢

′
𝑖𝑎𝑖𝑢𝑖 = 𝑎𝑖 ,

where 𝑎𝑖 denotes the eigenvalue of 𝐶1 with eigenvector 𝑢𝑖 . Therefore, 𝜎𝑖 = 1/
√︃
1 − 𝑎2

𝑖
.

Finally, recall that𝑀 = 𝑆′1Γ
′𝑆1(𝑆′1𝑆1)

−1. By assumption, either 𝑑 = 1, and so, 𝑆1 is a vector
inℝ𝑛 or Γ is symmetric. Either way 𝑆′1Γ

′𝑆1 = 𝑆′1(Γ + Γ′)𝑆1/2 = 𝑆′1𝐶1𝑆1. Therefore,

𝑀 = 𝑆′1𝐶1𝑆1(𝑆
′
1𝑆1)

−1

=
©­­«

𝑑∑︁
𝑖 ,𝑘=1

1√︃
1 − 𝑎2

𝑖

𝑣𝑖𝑢
′
𝑖𝐶1

1√︃
1 − 𝑎2

𝑘

𝑢𝑘𝑣
′
𝑘

ª®®¬
©­­«

𝑑∑︁
𝑖 ,𝑘=1

1√︃
1 − 𝑎2

𝑖

𝑣𝑖𝑢
′
𝑖

1√︃
1 − 𝑎2

𝑘

𝑢𝑘𝑣
′
𝑘

ª®®¬
−1

=

(
𝑑∑︁
𝑖=1

1
1 − 𝑎2

𝑖

𝑣𝑖𝑎𝑖𝑣
′
𝑖

) (
𝑑∑︁
𝑖=1

1
1 − 𝑎2

𝑖

𝑣𝑖𝑣
′
𝑖

)−1
=

𝑑∑︁
𝑖=1

𝑎𝑖𝑣𝑖𝑣
′
𝑖 ,
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where I amusing the facts that𝑢𝑖 is an eigenvector of𝐶1with eigenvalue 𝑎𝑖 and that {𝑢𝑖 }𝑑𝑖=1
and {𝑣𝑖 }𝑑𝑖=1 are orthonormal sets of vectors.

Although any𝑀 and 𝑆1 of the forms (F.18) and (F.19) satisfy the necessary optimality
conditions, not all such candidates are global minimizers of the KLDR. To find the global
optima, I substitute the solutions to the first-order optimality conditions in the KLDR and
select the solutions that minimize the KLDR. Multiplying equation (F.11) from left by 𝑆′1, I
get 𝐼 = 𝑆′1𝑆1 − 𝑆

′
1Γ𝑆1𝑀 − 𝑆′1Γ

′𝑆1𝑀 ′ + 𝑆′1𝑆1𝑀
′𝑀 . Computing the trace of the above equation

and substituting the result in (F.9), I get that (up to an additive constant)

KLDR(𝑀,𝑆1) = −1
2
log det

(
𝑆′1𝑆1

)
+ 1
2
tr

(
𝑆′1𝑆1

)
− tr

(
𝑀𝑆′1Γ𝑆1

)
+ 1
2
tr

(
𝑀𝑆′1𝑆1𝑀

′)
= −1

2
log det

(
𝑆′1𝑆1

)
+ 1
2
tr(𝐼 ).

Therefore, the𝑀 and 𝑆1 pairs that minimize the KLDR are the ones that maximize the
determinant of 𝑆′1𝑆1. But since 𝑆

′
1𝑆1 is a symmetricmatrix with eigenvalues {1/(1−𝑎2

𝑖
)}𝑑
𝑖=1,

its determinant is equal to
∏𝑑

𝑖=1
1

1−𝑎2
𝑖

. Therefore, any𝑀 and𝑆1 pair thatminimize theKLDR
are of the forms (F.18) and (F.19) with {𝑎𝑖 }𝑑𝑖=1 the top 𝑑 eigenvalues of 𝐶1 in magnitude
(with the possibility that some of the 𝑎𝑖 are equal).

With the expressions for the pseudo-true𝑀 and 𝑆1 in hand, I can prove the theorem.

Part (a). The forecasts given amodel parameterized bymatrices𝑀 ,𝐷 , and𝑁 are given
by equation (16). Using the definition of 𝑆 ≡ Γ

1
2
0𝑁 and the fact that𝐷′𝐷 can be taken to

be identity matrix, I can write equation (16) as follows: 𝐸 𝜃𝑡 [𝑦𝑡+𝑠 ] = Γ
1
2
0 𝑆

′−1𝐷𝑀 𝑠𝐷′𝑆′Γ
−1
2
0 𝑦𝑡−𝜏 .

Note that for anymatrix 𝑆 = (𝑆1 𝑆2) that satisfies the first-order optimality condition with
respect to 𝑆2,

𝑆−1 =

(
(𝑆′1𝑆1)

−1𝑆′1
𝑆′2

)
.

Therefore, 𝑆′−1 =
(
𝑆1(𝑆′1𝑆1)

−1 𝑆2

)
, and so,

𝑆′−1𝐷 = 𝑆1(𝑆′1𝑆1)
−1. (F.20)

The forecasts can thus be written only in terms of matrices𝑀 and 𝑆1 as follows:

𝐸 𝜃𝑡 [𝑦𝑡+𝑠 ] = Γ
1
2
0 𝑆1(𝑆

′
1𝑆1)

−1𝑀 𝑠𝑆′1Γ
−1
2
0 .
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Substituting for𝑀 and 𝑆1 using (F.18) and (F.19) and simplifying the resulting expression,
I get 𝐸 𝜃𝑡 [𝑦𝑡+𝑠 ] = Γ

1
2
0
∑𝑑
𝑖=1 𝑎

𝑠
𝑖
𝑢𝑖𝑢

′
𝑖
Γ

−1
2
0 . Letting 𝑝𝑖 ≡ Γ

−1
2
0 𝑢𝑖 and 𝑞𝑖 ≡ Γ

1
2
0𝑢𝑖 completes the proof of

part (a).

Part (b). Equation (17) gives the variance-covariancematrix under a model parameter-
ized bymatrices𝑀 ,𝐷 , and𝑁 . Using the definition of 𝑆 and setting𝐷′𝐷 = 𝐼 , equation (17)
can be written as follows:

Var𝜃 (𝑦 ) = Γ
1
2
0

(
𝑆′−1𝑆−1 + 𝑆−1′𝐷

∞∑︁
𝜏=1

𝑀 𝜏𝑀 ′𝜏𝐷′𝑆−1
)
Γ
1
2
0 .

To prove part (b), I need to show that the terms in parentheses add up to the identity
matrix. I start with the first term:

𝑆′−1𝑆−1 = (𝑆𝑆′)−1 = (𝑆1𝑆′1 + 𝑆2𝑆
′
2)

−1. (F.21)

The fact that 𝑆′2𝑆2 = 𝐼 implies that 𝑆2 can bewritten as 𝑆2 =
∑𝑛
𝑖=𝑑+1𝑢𝑖𝑤

′
𝑖
, where𝑢𝑖 ∈ ℝ𝑛 and

𝑤𝑖 ∈ ℝ𝑛−𝑑 for 𝑖 = 𝑑 + 1, . . . , 𝑛, {𝑢𝑖 }𝑛𝑖=𝑑+1 are orthonormal vectors, and {𝑤𝑖 }𝑛𝑖=𝑑+1 constitutes
an orthonormal basis for ℝ𝑛−𝑑 . On the other hand, the fact that 𝑆′1𝑆2 = 0 implies that
𝑢′
𝑖
𝑢𝑘 = 0 for any 𝑖 ∈ {1, . . . , 𝑑} and 𝑘 ∈ {𝑑 + 1, . . . , 𝑛}. Therefore, {𝑢𝑖 }𝑛𝑖=1 constitutes an

orthonormal basis forℝ𝑛 . Substituting for 𝑆1 and 𝑆2 in (F.21), I get

𝑆′−1𝑆−1 =

(
𝑑∑︁
𝑖=1

1
1 − 𝑎2

𝑖

𝑢𝑖𝑢
′
𝑖 +

𝑛∑︁
𝑖=𝑑+1

𝑢𝑖𝑢
′
𝑖

)−1
=

𝑑∑︁
𝑖=1

(1 − 𝑎2𝑖 )𝑢𝑖𝑢
′
𝑖 +

𝑛∑︁
𝑖=𝑑+1

𝑢𝑖𝑢
′
𝑖 ,

where the second equality uses the fact that {𝑢𝑖 }𝑛𝑖=1 are orthonormal. Next consider the
second term:

𝑆−1
′
𝐷

∞∑︁
𝜏=1

𝑀 𝜏𝑀 ′𝜏𝐷′𝑆−1 = 𝑆1(𝑆′1𝑆1)
−1

∞∑︁
𝜏=1

𝑀 𝜏𝑀 ′𝜏 (𝑆′1𝑆1)
−1𝑆′1

=

𝑑∑︁
𝑖=1

√︃
1 − 𝑎2

𝑖
𝑢𝑖𝑣

′
𝑖

∞∑︁
𝜏=1

𝑑∑︁
𝑘=1

𝑎2𝜏𝑘 𝑣𝑘𝑣
′
𝑘

𝑑∑︁
𝑙=1

√︃
1 − 𝑎2

𝑙
𝑣𝑙𝑢

′
𝑙

=

𝑑∑︁
𝑖=1

(1 − 𝑎2𝑖 )𝑢𝑖𝑢
′
𝑖

∞∑︁
𝜏=1

𝑎2𝜏𝑖 =

𝑑∑︁
𝑖=1

𝑎2𝑖 𝑢𝑖𝑢
′
𝑖 ,
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where the first equality uses (F.20) and the second equality is by (F.18) and (F.19). Putting
everything together,

𝑆′−1𝑆−1 + 𝑆−1′𝐷
∞∑︁
𝜏=1

𝑀 𝜏𝑀 ′𝜏𝐷′𝑆−1 =
𝑑∑︁
𝑖=1

(1 − 𝑎2𝑖 )𝑢𝑖𝑢
′
𝑖 +

𝑛∑︁
𝑖=𝑑+1

𝑢𝑖𝑢
′
𝑖 +

𝑑∑︁
𝑖=1

𝑎2𝑖 𝑢𝑖𝑢
′
𝑖

=

𝑛∑︁
𝑖=1

𝑢𝑖𝑢
′
𝑖 = 𝐼 ,

where the last equality follows the fact that {𝑢𝑖 }𝑛𝑖=1 is an orthonormal basis forℝ𝑛 . □

Proof of Proposition 3. Recall that I have assumed (without loss of generality) that Γ0 is
non-singular. Since𝐶1 is symmetric, {𝑢𝑖 }𝑑𝑖=1 constitutes an orthonormal basis forℝ𝑛 , and

so, Γ
−1
2
0 𝑦𝑡 can be expressed as Γ

−1
2
0 𝑦𝑡 =

∑𝑛
𝑖=1 𝜔𝑖𝑡𝑢𝑖 , where 𝜔𝑖𝑡 ≡ 𝑢′

𝑖
Γ

−1
2
0 𝑦𝑡 . Therefore,

𝑦𝑡 = Γ
1
2
0

𝑛∑︁
𝑖=1

𝜔𝑖𝑡𝑢𝑖 =

𝑛∑︁
𝑖=1

Γ
1
2
0𝑢𝑖𝑢

′
𝑖Γ

−1
2
0 𝑦𝑡 =

𝑛∑︁
𝑖=1

𝑦
(𝑖 )
𝑡 𝑞𝑖 ,

where the last equality uses the definitions of 𝑦 (𝑖 )𝑡 and 𝑞𝑖 .
The lag-one autocovariance of 𝑦 (𝑖 )𝑡 is given by

𝔼
[
𝑦
(𝑖 )
𝑡 𝑦

(𝑖 )
𝑡−1

]
= 𝑝𝑖

′𝔼[𝑦𝑡 𝑦𝑡−1]𝑝𝑖 = 𝑝𝑖 ′Γ1𝑝𝑖 = 𝑝𝑖 ′
(
Γ1 + Γ′1
2

)
𝑝𝑖 = 𝑝𝑖

′Γ
1
2
0𝐶1Γ

1
2
0𝑝𝑖 = 𝑢

′
𝑖𝐶1𝑢𝑖 ,

where the first equality uses the definition 𝑦 (𝑖 )𝑡 , and the last equality uses the definition
of 𝑝𝑖 . The fact that 𝑢𝑖 is an eigenvector of 𝐶1 implies 𝑢′

𝑖
𝐶1𝑢𝑖 = 𝑎𝑖𝑢

′
𝑖
𝑢𝑖 = 𝑎𝑖 , where 𝑎𝑖 is

the 𝑖 th largest (in magnitude) eigenvalue of𝐶1. Moreover, 𝔼
[
𝑦
(𝑖 )
𝑡

2]
= 𝑝𝑖

′Γ0𝑝𝑖 = 𝑢′
𝑖
𝑢𝑖 = 1.

Therefore, 𝜌𝑖 ≡ 𝔼
[
𝑦
(𝑖 )
𝑡 𝑦

(𝑖 )
𝑡−1

]
/
√︂
𝔼

[
𝑦
(𝑖 )
𝑡

2]
= 𝑎𝑖 . The proposition follows the fact that 𝑎𝑖 is the

𝑖 th largest eigenvalue of𝐶1 in magnitude. □

Proof of Proposition 4. I prove the result under the assumption that the top𝐷 eigenvalues
of the first autocorrelationmatrix,𝐶1, are all distinct. This assumption is true for generic
true processes. By Theorem 5(a) (or Theorem 4), the forecasts of an agent who uses a
pseudo-true 𝑑-state model 𝜃 are given by

𝐸 𝜃𝑡 [𝑦𝑡+𝑠 ] =
𝑑∑︁
𝑖=1

𝑎𝑖
𝑠𝑞𝑖𝑝𝑖

′𝑦𝑡 , (F.22)

where 𝑎𝑖 is the 𝑖 th largest eigenvalue of 𝐶1, 𝑢𝑖 denotes the corresponding eigenvector,
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normalized to have unit norm, 𝑝𝑖 ≡ Γ
−1
2
0 𝑢𝑖 , and 𝑞𝑖 ≡ Γ

1
2
0𝑢𝑖 . Since the eigenvalues of𝐶1 are

all distinct, the corresponding eigenvectors are unique (up tomultiplicative constants).
Therefore, all agents use the same values of {(𝑎𝑖 , 𝑝𝑖 , 𝑞𝑖 )}𝑖 to forecast.

Consider agent 𝑗 who is constrained tomodels of dimension 𝑑𝑗 . The agent’s optimal
action given her pseudo-true 𝑑-state model is given by

𝑥𝑗𝑡 = 𝐸
𝜃 𝑗
𝑡

[ ∞∑︁
𝑠=1

𝑐 ′𝑗 𝑠𝑦𝑡+𝑠

]
=

∞∑︁
𝑠=1

𝑐 ′𝑗 𝑠𝐸
𝜃 𝑗
𝑡 [𝑦𝑡+𝑠 ] =

∞∑︁
𝑠=1

𝑐 ′𝑗 𝑠

𝑑𝑗∑︁
𝑖=1

𝑎𝑖
𝑠𝑞𝑖𝑝𝑖

′𝑦𝑡 =

𝑑𝑗∑︁
𝑖=1

𝑔 𝑗 𝑖𝑦
(𝑖 )
𝑡 ,

where 𝜃 𝑗 denotes agent 𝑗 ’s pseudo-true model, 𝑦 (𝑖 )𝑡 ≡ 𝑝′
𝑖
𝑦𝑡 as before, 𝑔 𝑗 𝑖 ≡

∑∞
𝑠=1 𝑎𝑖

𝑠𝑐 ′
𝑗 𝑠
𝑞𝑖

is a constant, which is a finite since {𝑐 𝑗 𝑠 }𝑠 is absolutely summable. Using vector nota-
tion, 𝑥𝑡 ≡ (𝑥1𝑡 , . . . , 𝑥 𝐽𝑡 )′ ∈ ℝ𝐽 , I can write the above expression as 𝑥𝑡 = 𝐺𝑦

(1:𝐷)
𝑡 , where

𝐺 ≡
(
𝑔 ′1 𝑔 ′2 · · · 𝑔 ′

𝐽

)′
∈ ℝ𝐽×𝐷 , 𝑔 𝑗 ≡

(
𝑔 𝑗1 𝑔 𝑗2 . . . 𝑔 𝑗𝑑𝑗 0 . . . 0

)
∈ ℝ1×𝐷 , and 𝑦 (1:𝐷)

𝑡 ≡(
𝑦
(1)
𝑡 𝑦

(2)
𝑡 · · · 𝑦

(𝐷)
𝑡

)′
∈ ℝ𝐷 . □
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