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1. Introduction
Rational agents with aligned interests best served by coor-
dinating their actions may nevertheless fail to do so if they
disagree on the best course. A player who is sufficiently
convinced of an action being the one resulting in the high-
est payoff will be willing to take that action in isolation,
even at the expense of forgoing the payoff from acting
in harmony with other players. This nonconforming action
will serve as a strong signal for the players who play the
same game in the future that the payoff-maximizing action
could be different than what was chosen by the majority
of players. But can future generations of players use this
information to improve their payoffs? Is the unique insight
of the nonconforming player lost if only a handful of other
players observe his action, or will it eventually reach the
entire population? How will the conclusions be different if
each player of each generation has a unique insight about
the game being played? This paper introduces a dynamic
model of coordination games with asymmetric information
to provide answers to these questions.

The scenario described above could represent a society
wherein an informed leader’s actions have the potential to
change the prevailing social norm, or the market for a new
technology in which adoption by an informed user can

serve as signal of his belief in the future of the technol-
ogy. Coordination models similar to ours have been used
to study a wide-ranging set of phenomena including con-
ventions (Shin and Williamson 1996), social norms and
the rule of law (Acemoglu and Jackson 2015, 2014), cur-
rency runs (Obstfeld 1996), regime change (Angeletos et al.
2007), markets with externalities (Morris and Shin 2002;
Angeletos and Pavan 2007, 2009), and Keynsian coordi-
nation failures (Cooper and John 1988), among others.
Cooper (1999) contains additional examples of the applica-
tions of coordination games with asymmetric information
in macroeconomics.
To answer the question posed above, we study a

supermodular game of incomplete information played by
generations of short-run players.1 In every period, a new
generation of players are born who live for one period.
The players of each generation play a supermodular game
with payoffs that depend on a fixed unknown state of the
world. Each player inherits the belief of a player from the
previous generation—the player previously occupying his
role—and observes the actions of some of the players of
the last generation—his neighbors. The players then simul-
taneously choose actions to maximize their payoffs given
the information available to them.
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Myopic behavior by short-run players is a good approx-
imation to individuals’ rational behavior in the examples
mentioned above where we have a large number of small
players, each having a negligible impact on the entire soci-
ety. We have in mind a small customer deciding whether
to purchase a product, a citizen deciding whether to follow
a norm, or a protester deciding whether to join a protest.
In all of these examples, each individual can ignore the
effect of his current action on the actions of the individu-
als he encounters in the future. Alternatively, one can think
of each role as a dynasty with each short-run player rep-
resenting a member of the dynasty that has access to the
entire history of the dynasty but who only makes a single
decision.

We restrict attention to Markovian strategies in which
the players’ actions are not functions of the history of the
game but only of their information. We use pure strat-
egy Markov Bayesian equilibrium (MBE) as the solution
concept.2 Players choose actions that maximize their instan-
taneous payoffs given others’ strategies and their beliefs,
and the beliefs are consistent with the equilibrium stategies
and the application of Bayes’ rule.

We show that, if the social network is connected, play-
ers eventually reach consensus both in their actions and
their payoffs despite occupying roles with asymmetric ini-
tial information about the fundamental state of the world. In
other words, although players in initial generations might
disagree on the best course of action, future generations
cannot disagree in the long run. This result is similar in
spirit to the argument presented by Aumann (1976) that
Bayesian agents who share a prior cannot “agree to dis-
agree.” The key intuition for why this result holds is that
the imitation principle applies to our setting.3 According to
the imitation principle, the mere fact that, in equilibrium,
no player (he) wishes to deviate by imitating the action of
a player (she) whose play he observes infinitely often is
evidence that he believes that his equilibrium action results
in a higher payoff. The imitation principle imposes restric-
tions on the equilibrium beliefs that can be leveraged to
rule out strategies according to which two players in two
roles that frequently observe each others’ actions continue
to miscoordinate.

In §4 we restrict our attention to quadratic symmetric
supermodular games and develop sharper results. Because
of their tractability, quadratic games are studied exten-
sively in the recent literature.4 We show that, if the infor-
mation structure of each player can be represented by a
finite partition of the state space, the asymptotic consensus
action is generically the action players would have cho-
sen if they had been able to directly pool their informa-
tion at the beginning of the game. This result shows that,
in a quadratic supermodular game of incomplete informa-
tion, failure of information aggregation is nongeneric. We
also prove that consensus in actions and payoffs continue
to hold even if the network is random, directed, and time-
varying, or if the players observe a stream of signals over

time whose distribution depends on the previous actions of
players.
Our assortment of results suggests that consensus is a

ubiquitous phenomenon in games of strategic complemen-
tarity with a common prior. They can be interpreted as rein-
forcing the idea presented by Aumann (1976) that Bayesian
agents cannot disagree forever. Aumann’s argument was
presented in a setting with no interaction among players
other than the sharing of beliefs. Our results suggest that
the conclusion that Bayesian players cannot agree to dis-
agree is robust to the introduction of strategic interactions,
as long as players’ actions are strategic complements.
Our result on information aggregation shows that, when

the utilities are quadratic, consensus generically implies
optimal information aggregation. Similar results, with more
stringent requirements, have already appeared in the litera-
ture; however, a general result has been lacking. In particu-
lar, Mossel et al. (2011) propose conditional independence
of private signals as a sufficient condition for consensus to
imply information aggregation. Ostrovsky (2012) presents
a form of conditional independence called “separability” as
a sufficient condition for information aggregation in a Kyle
(1985)-style market. Our generic information aggregation
result, on the other hand, does not rely on any conditional
independence assumptions. Independently, in a recent paper,
Arieli and Mueller-Frank (2015) prove generic information
aggregation results in a more abstract setting.
In summary, we make three distinct sets of contribu-

tions: First, we contribute to the theory of symmetric super-
modular games by showing that short-run players reach
consensus on their payoffs and actions, even when the equi-
librium is not unique. Our second contribution is to the
social learning literature, where we show that presence of
payoff externalities of the complementary nature will not
hamper learning in societies that are sufficiently connected
over time. Third, we show that in such a coordination setup
information is generically aggregated. We present a set of
examples from a variety of application domains, ranging
from economics to engineering, in addition to a set of dis-
tinctive examples that are meant to illustrate the tightness
of our results.
Related Literature. In addition to the papers already

mentioned, our paper is related to three lines of research in
game theory. The first is the literature on Bayesian learning
over networks. The focus of this literature is on model-
ing the way agents use their observations to update their
beliefs and characterizing the outcomes of the learning pro-
cess. Examples include Borkar and Varaiya (1982), Baner-
jee (1992), Bikhchandani et al. (1992), Bala and Goyal
(1998), Smith and Sørensen (2000), Gale and Kariv (2003),
Çelen and Kariv (2004), Rosenberg et al. (2009), Mossel
and Tamuz (2010), Mossel et al. (2011), Acemoglu et al.
(2011), Mueller-Frank (2013), Lobel and Sadler (2015a, b),
and Acemoglu et al. (2014). In this paper, we extend the
Bayesian social learning framework to an environment with
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payoff externalities where each short-run player’s stage
payoff is a function of other players’ actions.

The current work is also related to the literature on learn-
ing in games, such as the works by Jordan (1991, 1995),
Kalai and Lehrer (1993), Jackson and Kalai (1997), Nach-
bar (1997), and Foster and Young (2003). The central ques-
tion in this literature is whether agents learn to play a Nash
or Bayesian Nash equilibrium. In the current paper in con-
trast, the focus is on whether agents in a network asymp-
totically reach consensus and whether they aggregate the
dispersed information.

Finally, our paper is related to the literature on infor-
mation aggregation in markets. The focus of this litera-
ture is on characterizing the conditions under which prices
correctly aggregate the information dispersed throughout
the market. Examples include Wolinsky (1990), Foster and
Viswanathan (1996), Vives (2010), Lauermann and Wolin-
sky (2015), Amador and Weill (2012), Rostek and Weretka
(2012), Ostrovsky (2012), and Bonatti et al. (2015). In our
paper the players do not observe public signals, such as
prices, but rather make local observations about the actions
of the players in their social neighborhood.

Organization of the Paper. The rest of the paper is orga-
nized as follows. Section 2 presents the baseline model.
Section 3 presents our main result on consensus in super-
modular games. In §4 we specialize to a quadratic super-
modular game and present our result on the genericity of
information aggregation. We also present our results on
consensus with endogenous signals and time-varying net-
works. Section 5 discusses the logic and implications of
our results in more detail. In §6 we provide some appli-
cations of symmetric supermodular games in engineering
and economics. All the proofs that are omitted from pre-
vious sections are provided in §7. Section 8 contains our
concluding remarks.

2. Model
Throughout, we use the usual order and the standard topol-
ogy on ✓. Products of topological spaces are equipped with
the product topology. All topological spaces are endowed
with the Borel sigma-algebra. Two measurable mappings
are said to be equal if they have the same domain and
codomain and agree almost everywhere. Given a probabil-
ity distribution P over a measurable space X⇥Y , margX P
denotes the marginal distribution of P over X. Given sets
X11 0 0 0 1Xn, we use X to denote ⇥n

i=1Xi with generic ele-
ment x and use XÉi to denote⇥j 6=iXi with generic element
xÉi = 4x11 0 0 0 1xiÉ11xi+11 0 0 0 1xn5.

2.1. The Game

Consider n roles indexed by i 2 N = 811 0 0 0 1n9. Role i
represents a sequence of short-run players, each of whom
plays only once. We refer to the short-run player at role i
playing in stage t as player it. We refer to the collection of

all short-run players in role i as “big” player i or simply
player i.
At the beginning of the game, nature chooses the payoff-

relevant state of the world à from a compact metric
space ‰. The players in a given role all observe the same
noisy signal of à. We denote by si the signal observed by
the players in role i. We assume that si belongs to a count-
able set Si that is endowed with the discrete topology. The
realized state otherwise remains unknown to the players.
The game is played over a countable set of stages in-

dexed by the set of positive integers �. In the beginning
of stage t 2 �, player it observes the actions chosen in
the previous stages by a subset of big players, called i’s
neighbors and denoted by Ni. We use the convention that
each i is his own neighbor. We further assume that the
neighborhood relationship is symmetric: i is a neighbor of j
if and only if j is a neighbor of i.
At the end of period t, player it chooses an action ait 2Ai

simultaneously with other short-run players and receives
payoff ui4at1 à5. We assume that Ai is a compact subset
of ✓ and ui is continuous in all its arguments. We further
assume that the game is symmetric: for all i1 j 2N , Ai =Aj

and ui4at1 à5 = uj4a
0

t1 à5 if ait = a0

jt and aÉit is a permu-
tation of a0

Éjt . Finally, we assume that ui4at1 à5 is strictly
supermodular in at for all à 2‰. [A function f 2 ✓n ! ✓

is supermodular if f 4min8x1y95+ f 4max8x1y95æ f 4x5+
f 4y5 for all x1y 2✓

n, where min48x1y95 denotes the com-
ponentwise minimum and max48x1y95 denotes the com-
ponentwise maximum of x and y. The function is strictly
supermodular if the inequality is strict for any incompara-
ble pair of vectors x and y.5]
We summarize the players’ uncertainty about the exoge-

nous variables by some ó belonging to the measurable
space 4Ï1B5, where Ï=‰⇥S and B is the Borel sigma-
algebra. Note that the canonical projection si2 Ï ! Si is
continuous and therefore measurable. We assume that the
payoff-relevant state à and the private signals are jointly
distributed according to some probability distribution ⇣

over 4Ï1B5 and that this is common knowledge. The
expectation operator corresponding to ⇣ is denoted by ⇧.
We restrict our attention to Markovian strategies accord-

ing to which the players’ actions depend on the history
of the game only to the extent that it is informative of
the payoff-relevant state of the world. In particular, we
define the players’ strategies and information as follows.
Let H i1 be the smallest sub-sigma algebra of B that makes
si measurable. H i1 captures the information available to
player i1. A Markovian strategy for player i1 is a mapping
ëi12 Ï!Ai which is measurable with respect to H i1. For
t æ 2 define H

ë tÉ1

it and ëit recursively as follows: Denote
by ë tÉ1 = 4ë11ë21 0 0 0 1ëtÉ15, where ëí = 4ë1í 1 0 0 0 1ëní 5,
the Markovian strategy profile followed by the short-run
players that are active before stage t. Given ë tÉ1, the
information available to player it is captured by H

ë tÉ1

it ,
the smallest sub-sigma algebra of B that makes si and
8ëj11 0 0 0 1ëj1 tÉ19j2Ni

measurable. A Markovian strategy for
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player it is a mapping ëit2 Ï!Ai that is measurable with
respect to H

ë tÉ1

it . We let ë = 4ë11ë21 0 0 05 denote a Marko-
vian strategy profile generated as above and let H

ë
ià =W

à

t=1H
ë tÉ1

it to be the information available to the players in
role i “at the end of the game” given that players follow
strategy profile ë . Note that, for any strategy profile ë and
all i, Hë tÉ1

it ✓H
ë t0É1

it0 if t ∂ t0. Whenever there is no risk of
confusion we use H

ë
it to mean H

ë tÉ1

it .

2.2. Equilibrium

Definition 1. A Markovian strategy profile ë is a Markov
Bayesian equilibrium (MBE) if for all i, t, and H

ëtÉ1
it -

measurable mappings ë 0

it2 Ï!Ai,

⇧6ui4ëit1ëÉit1 à5 óH
ëtÉ1
it 7æ ⇧6ui4ë

0

it1ëÉit1 à5 óH
ëtÉ1
it 70

According to our equilibrium notion, the short-run play-
ers who are active in stage t choose an interim pure-strategy
Bayesian Nash equilibrium of a Bayesian game in which
their information is induced by the equilibrium strategies
of the short-run players that played before them.

Proposition 1. A MBE ë exists.

Proof. The proof involves repeated use of Theorem 23 of
Van Zandt (2010). The game played by the short-run play-
ers in the first stage is a Bayesian supermodular game that
satisfies the conditions of Theorem 23 of Van Zandt. There-
fore, it has an interim pure-strategy Bayesian Nash equilib-
rium denoted by ë1 = 4ë111 0 0 0 1ën15. Let Hë1

i2 denote the
smallest sub-sigma algebra of B that makes si and 8ëj19j2Ni

measurable. The sigma-algebras H
ë1

12 1 0 0 0 1H
ë1

n2 define a
Bayesian supermodular game in the second stage, which
has an interim pure-strategy Bayesian Nash equilibrium ë2.
Repeating this argument inductively, we can construct an
MBE ë = 4ë11ë21 0 0 05. É

2.3. Remarks on the Model

The model considers repeated interactions among rational
short-run players in given roles. A role can represent a
myopic individual with each short-run player representing
the individual’s one-time decision. Alternatively, a role can
represent a dynasty with each short-run player represent-
ing a member of the dynasty that has access to the entire
history of the dynasty but only makes a single decision.

Players’ behavior is determined by an MBE strategy
profile. The short-run players in the first generation are
endowed with private information about the realized state
of nature. The equilibrium strategy determines how play-
ers use their information to choose the actions that maxi-
mize their expected payoffs. The players that follow inherit
the information of their predecessors. However, each mem-
ber of successive generations also acquires information,
through the observation of recent events in his social neigh-
borhood, that was not available to his predecessors. The
MBE imposes the usual requirements that the players’

actions maximize their expected payoffs, and the informa-
tion contained in new observations is incorporated in a
fashion consistent with the equilibrium and the application
of Bayes’ rule.
MBE, in addition, restricts the players’ strategies to be

measurable with respect to the exogenous variables; hence
the term Markovian. Players following Markovian strate-
gies do not condition their actions on observations that
are uninformative about the exogenous variables. Thus,
the inference of player it about the actions of other play-
ers in his generation given his knowledge of the equilib-
rium strategies reduces to inference about the exogenous
variables. In contrast, long-run players that follow non-
Markovian strategies may experiment, try to build reputa-
tions, or punish other players based on past events.
We note that the players in our model only observe the

actions of their neighbors and do not share their past expe-
riences, signals, or beliefs with players in other roles. Fur-
thermore, the players do not observe the realized payoffs of
their predecessors. In §§4.2 and 5.3 we discuss an exten-
sion of the model to the case of observed payoffs.
Finally, strict supermodularity of the utility function cap-

tures the idea that it is in the players’ interest to coordinate
their actions: The sum of the utilities for players i and j
when playing ai and aj 6= ai, respectively, is less than the
sum of the utility of i when player j moves to ai (matching
player i) and the utility of j when player i moves to aj .
This property of the utility function is key in proving our
main result on consensus in the next section.

3. Main Result
Our main result states that short-run players asymptotically
reach consensus when they act according to an MBE strat-
egy profile. We discuss the implications of the results pre-
sented here in §5.1.

Theorem 1. Let ë be an MBE. For all i1 j 2N , ëitÉëjt !

0, ⇣ -almost surely, as t goes to infinity.

Proof. We letS denote the smallest sub-sigma algebra ofB
that makes the mapping ó 7! s4ó5 = 4s14ó51 0 0 0 1 sn4ó55
measurable, and let Hë

à
=

Wn
i=1H

ë
ià. Since the information

available to the players in any stage of the game is no
more than the information jointly contained in their pri-
vate signals, Hë

à
✓ S . Therefore, ëit is measurable with

respect to S for all i and t, so ëit4ó5= ëit4ó
05 whenever

s4ó5= s4ó05. We can thus define the mapping ëit2 S !Ai,
with some abuse of notation, by letting ëit4s5= ëit4ó4s55,
where ó4s5 is a selection of Ï4s5 = 8ó 2 Ï2 s4ó5 = s9.
The statement of the theorem is therefore equivalent to the
following: ëit4s5 É ëjt4s5 ! 0 for all s 2 S with ⇣4s5 =
⇣4‰⇥ 8s95> 0.
Suppose, to the contrary, that there exists some neighbor-

ing i1 j 2 N , some s0 2 S with ⇣4s05> 0, and a divergent
sequence 8k0t9t2� such that óëik0t

4s05 É ëjk0t
4s05ó is uni-

formly bounded away from zero. Since S is countable, there
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exists an enumeration s11 s21 0 0 0 of S. Since A is a compact
metric space, there exists a further subsequence 8k1t9t2�
of 8k0t9t2� such that the sequence 8ëk1t

4s159t2� is conver-
gent. Likewise, there exists a further subsequence 8k2t9t2�
of 8k1t9t2� such that the sequence 8ëk2t

4s259t2� is conver-
gent, and by induction, for m 2 �, there exists a further
subsequence 8km+11 t9t2� of 8kmt9t2� such that the sequence
8ëkm+11 t

4sm+159t2� is convergent. Construct the sequence
8lt9t2� by letting lt = ktt . For all s 2 S, as t goes to infin-
ity ëlt

4s5 converges to some ëà4s5 2 A with ëià4s05 6=
ëjà4s05. With slight abuse of notation, define the measur-
able mapping ëà2 Ï! A by letting ëà4ó5 = ëà4s4ó55.
Since ui is continuous and A and ‰ are compact, by the
dominated convergence theorem,

⇧6ui4ëlt
1 à57! ⇧6ui4ëà1 à570

Define the H
ë
ilt
-measurable mapping ë 0

ilt
2 Ï!Ai as ë 0

ilt
=

ëjltÉ1
. This mapping constitutes a feasible strategy for

player ilt according to which he imitates the action chosen
by player jltÉ1. By construction, 4ë 0

ilt
1ëÉilt

5! 4ëjà1ëÉià5
for all ó 2Ï. Thus,

⇧6ui4ë
0

ilt
1ëÉilt

1 à57! ⇧6ui4ëjà1ëÉià1 à570

Since ë is an equilibrium, ⇧6ui4ëlt
1à57æ⇧6ui4ë

0

ilt
1ëÉilt

1à57
for all t2�, so

⇧6ui4ëià1ëÉià1 à57æ ⇧6ui4ëjà1ëÉià1 à570 (1)

By a similar argument,

⇧6uj4ëjà1ëÉjà1 à57æ ⇧6uj4ëià1ëÉjà1 à570 (2)

Let u4ai3aj1aÉij1 à5 denote the utility of a player in role i
when he chooses ai, player j chooses aj , and other players
choose aÉij . By the symmetry assumption, the payoff of a
player in role j when player j chooses ai, player i chooses
aj , and others choose aÉij is also equal to u4ai3aj1aÉij1 à5.
Equations (1) and (2) thus can be written as

⇧6u4ëià3ëjà1ëÉijà1 à57æ ⇧6u4ëjà3ëjà1ëÉijà1 à571

⇧6u4ëjà3ëià1ëÉijà1 à57æ ⇧6u4ëià3ëià1ëÉijà1 à570

Summing the above equations,

⇧6u4ëià3ëjà1ëÉijà1 à5+ u4ëjà3ëià1ëÉijà1 à57

æ ⇧6u4ëià3ëià1ëÉijà1 à5+ u4ëjà3ëjà1ëÉijà1 à570 (3)

On the other hand, since u is strictly supermodular, for all
ai 2Ai and aj 2Aj ,

u4ai3aj1aÉij1 à5+ u4aj3ai1aÉij1 à5

∂ u4ai3ai1aÉij1 à5+ u4aj3aj1aÉij1 à51 (4)

with equality if and only if ai = aj . Equations (3) and (4)
imply that ëià = ëjà for ⇣ -almost all ó, contradicting the
assumption that ëià4s05 6= ëjà4s05 and ⇣4s05> 0. É

An immediate corollary of consensus in strategies is
asymptotic consensus in payoffs.

Corollary 1. Let ë be a MBE. For all i1 j 2 N ,
ui4ët1 à5 É uj4ët1 à5 ! 0, ⇣ -almost surely, as t goes to
infinity.

Proof. Define ëit2 S ! Ai as in the proof of Theorem 1.
It is sufficient to show that ui4ët4s51 à5É uj4ët4s51 à5! 0
for all à 2 ‰ and s 2 S with ⇣4s5 > 0. Suppose to the
contrary that there exists some neighboring i1 j 2 N , some
à0 2‰ and s0 2 S with ⇣4s05> 0, and a divergent sequence
8k0t9t2� such that óui4ëk0t

4s051 à05Éuj4ëk0t
4s051 à05ó is uni-

formly bounded away from zero. As in the proof of The-
orem 1, we can construct a further subsequence 8lt9t2�
of 8k0t9t2� such that for all s 2 S, as t goes to infinity,
ëlt

4s5 converges to some ëà4s5 2A. Furthermore, by The-
orem 1, ëià4s5= ëjà4s5 for all i1 j 2 N and s 2 S. There-
fore, since ui is continuous and symmetric, ui4ëlt

4s051 à05É
uj4ëlt

4s051 à05 ! 0 for all i1 j 2 N , contradicting the
assumption that óui4ëk0t

4s051 à05 É uj4ëk0t
4s051 à05ó is uni-

formly bounded away from zero for some i1 j . É

The above result also implies ex ante consensus in the
expectation of big players’ asymptotic payoffs: prior to the
start of the game, players in all roles expect their successors
to asymptotically achieve similar payoffs. In §5.1 we show
by means of an example that players might disagree in their
conditional expected payoffs even when they are receiving
the same payoffs.

4. Quadratic Games
In this section we study an important special case of the
baseline model introduced in §2 in which à is a real number
and each player’s utility function is quadratic in both à and
the average action of other players. Namely, we assume
that

ui4a1 à5=É41Éã54ai É à52 Éã4ai É āÉi5
21 (5)

where ã 2 40115 is a constant and āÉi =
P

j 6=i aj/4nÉ 15
denotes the average action of other players.6 The game
with players’ payoffs given by (5) is a strictly supermodu-
lar game since the payoff’s cross partial derivative is equal
to ã> 0. The first term is a quadratic loss in the distance
between the realized state and player i’s action, captur-
ing the player’s preference for actions that are close to the
unknown state. The second term is the “beauty contest”
term representing the player’s preference for acting in con-
formity with the rest of the population. This utility function
was introduced by Morris and Shin (2002) to represent the
preferences of the players who engage in second-guessing
others’ actions as postulated by Keynes. Restricting the util-
ity function allows us to show optimal information aggre-
gation and extend our results on consensus to endogenous
signals and time-varying networks. The following proposi-
tion states an important property of the quadratic game.

Proposition 2. The quadratic game has a unique MBE ë .
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The result is based on expressing the MBE as a sequence
of stage game Bayesian Nash equilibria. In each stage t,
the corresponding short-run player it’s equilibrium strat-
egy must be a best response to other players’ strategies.
Given the payoff in (5) and since ã belongs to 40115, the
players’ best-response function is a contraction mapping.
This, together with the compactness of the action space,
implies that the stage game has a unique Bayesian Nash
equilibium.7 Since a MBE is a sequence of stage game
Bayesian Nash equilibria and all stages have unique equi-
libria, the MBE must be unique.

4.1. Information Aggregation

Consider the model with quadratic payoffs. Suppose that
the signal space Si is finite. Define information, strate-
gies, and Markov Bayesian equilibrium as in the baseline
model. Let Hë

à
=

Wn
i=1H

ë
ià denote the information collec-

tively available to the players at the end of the game when
they follow the strategy profile ë .

Instead of considering a single probability measure over
4Ï1B5, in this subsection we prove a result about the set
of all probability measures over 4Ï1B5. Let P denote the
space of all probability measures over 4Ï1B5 with ele-
ments denoted by P , and let d denote the total variation
distance between measures. 4P1d5 is a metric space and
therefore a topological space. We say that a property holds
generically if it is true for all P belonging to a residual sub-
set of 4P1d5.8 We have the following result on information
aggregation.

Theorem 2. Let ëP denote the unique MBE of the qua-
dratic game given prior P 2 P. For generic P 2 P and all i,
ëP
it ÉEP 6à óHëP

à
7! 0, P -almost surely.

The theorem states that for priors P belonging to a
generic set of probability distributions, the players asymp-
totically play as if they all had the information captured by
the sigma-algebra H

ëP

à
, which is the aggregate information

collectively available to the players at the end of the game.

4.2. Endogenous Signals and Time-Varying
Directed Networks

Suppose that each short-run player it privately observes a
signal sit belonging to a complete separable metric space Si.
The distribution of sit depends on the history of the game
up to stage t.

Additionally, suppose that each short-run player it has
a different and random set of neighbors. Denote the set
of neighbors of player it by Nit . We maintain the assump-
tion that i 2Nit for all i and t. However, the neighborhood
relationship is no longer assumed to be symmetric. Let N i

denote the space of all possible neighborhoods for a player
in role i, and let N =

Qn
i=1N i.

We summarize the players’ uncertainty by some ó
belonging to the measurable space 4Ï1B5, where Ï =

‰ ⇥ S� ⇥ N
� and B is the Borel sigma-algebra. The

payoff-relevant state, the signals, and the neighborhoods are
jointly distributed according to some endogenous probabil-
ity distribution.
In what follows, we recursively define the players’ strate-

gies and information for the model with endogenous signals
and time-varying networks. Let H i1 be the smallest sub-
sigma algebra of B that makes si1 and Ni1 measurable. A
Markovian strategy for player i1 is a mapping ëi12 Ï!Ai

which is measurable with respect to H i1. For t æ 2, define
H

ë tÉ1

it and ëit recursively as follows. Denote by ë tÉ1 =

4ë11ë21 0 0 0 1ëtÉ15 the Markovian strategy profile followed
by the short-run players that are active before stage t. Given
ë tÉ1, the information available to player it is H

ë tÉ1

it , the
smallest sub-sigma algebra of B that refines H

ë tÉ2

i1 tÉ1 and
makes sit , Nit , and 8ëj1 tÉ19j2Nit

measurable. A Markovian
strategy for player it is a mapping ëit2 Ï!Ai that is
measurable with respect to H

ë tÉ1

it . We let ë = 4ë11ë21 0 0 05
denote a Markovian strategy profile generated as above and
let Hë

ià =
W

à

t=1H
ë tÉ1

it . Note that, for any strategy profile ë

and all i, Hë tÉ1

it ✓H
ë t0É1

it0 if t ∂ t0. Whenever there is no risk
of confusion we use H

ë
it to mean H

ë tÉ1

it .
We next construct the endogenous probability distri-

bution induced by a Markovian strategy profile ë over
4Ï1B5. The payoff-relevant state à is distributed according
to some exogenous probability distribution P0. The history
of the game at the end of stage t is defined recursively:
h0 = à and ht = 4htÉ13 st1at1Nt5 for all t æ 1, where st , at ,
and Nt = 4N1t1 0 0 0 1Nnt5 are the signal, action, and neigh-
borhood profiles realized in stage t. Given history htÉ1,
the private signals and neighborhoods in stage t are dis-
tributed according to èt4htÉ15 2 „4S ⇥ N 5. The mapping
htÉ1 7! èt4htÉ15 is a transition probability from the set
of all histories to S ⇥ N .9 We assume that the probabil-
ity distribution P0 and transition probabilities 8èt9t2� are
common knowledge. P0 and è1 uniquely define a proba-
bility distribution P1 over ‰⇥ S ⇥N . Likewise, for t æ 2,
the strategy profile ë tÉ1 = 4ë11ë21 0 0 0 1ëtÉ15, probability
distribution P0, and transition probabilities è11è21 0 0 0 1èt

uniquely define a probability distribution Pë tÉ1

t over ‰ ⇥

St ⇥ N
t . The probability measures P01P11P

ë1

2 1 0 0 0 can be
uniquely extended to Ï=‰⇥S�⇥N

� by Tulcea’s exten-
sion theorem.10 We denote this extension by Pë and the
corresponding expectation operator by Eë .

Definition 2. A Markovian strategy profile ë for the
game with endogenous signals is an MBE if for all i, t, and
H

ëtÉ1
it -measurable mappings ë 0

it2 Ï!Ai,

Eë 6ui4ëit1ëÉit1 à5 óH
ëtÉ1
it 7æEë 6ui4ë

0

it1ëÉit1 à5 óH
ëtÉ1
it 70

Our next result generalizes Proposition 2 on the unique-
ness of equilibrium in the quadratic game to the setting
with endogenous signals and time-varying networks.

Proposition 3. The quadratic game with endogenous sig-
nals and time-varying networks has a unique MBE ë .
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We next present a series of results for the quadratic
payoff in (5) with endogenous signals and time-varying
networks that are counterparts of the results stated for sym-
metric strictly supermodular games in §3. We first state an
intermediate result that shows that the actions of short-run
players in a given role converge to some limit action.

Proposition 4. Let ë be the MBE of the quadratic game
with endogenous signals. For all i there exists some
H

ë
ià-measurable random variable ëià2 Ï! Ai such that

ëit ! ëià, P
ë -almost surely.

The convergence follows by using the fact that equilib-
rium action of each player can be represented as a weighted
sum of expectations with respect to beliefs of all orders of
the payoff-relevant state, and that each term in this sum
converges as t!à.

Our next result shows consensus in actions of play-
ers when the network is sufficiently connected over time.
A network process is a probability distribution over N�.

Definition 3. A network process is called infinitely often
almost surely strongly connected if for any two nodes i
and j there exists a sequence of nodes k11k21 0 0 0 1km such
that k1 = i, km = j , and for all 1∂ l <m, kl 2Nkl+11 t

almost
surely infinitely often.

Theorem 3. Let ë be the MBE of the quadratic game with
endogenous signals. If the network process marg

N� Pë is
infinitely often almost surely connected, then for all i1 j 2N ,
ëit Éëjt ! 0, Pë -almost surely, as t goes to infinity.

The following result is the counterpart of the result on
consensus in payoffs presented in Theorem 1, presented
here for the game with quadratic payoffs.

Corollary 2. Let ë be the MBE of the quadratic game
with endogenous signals. If the network process marg

N� Pë

is infinitely often almost surely connected, then for all
i1 j 2N , ui4ët1 à5É uj4ët1 à5! 0, Pë -almost surely, as t
goes to infinity.

The above two results extend the results in §3 to endoge-
nous signals and time-varying networks when the payoff
function is quadratic. We discuss their implications further
in §5.3.

5. Discussion
In the games considered in §3, players acquire exogenous
private signals si at the beginning of the game that reveal
information about the state of the world à. They use this
information to play the MBE action. The action played by
each player becomes known to the players in neighboring
roles. From the perspective of player i, the actions of neigh-
bors j 2 Ni reveal information about their private signals,
which can be used to improve the actions that they play in
the subsequent stage. As time progresses, actions of neigh-
bors reveal more information about their private signals as

well as information about the private signals of their neigh-
bors, and the signals of their neighbors’ neighbors. If the
network is connected, all players eventually observe actions
that carry information about the private signals of all other
players. The results in §§3 and 4 characterize the asymp-
totic behavior of the agents involved in this game. This
section discusses the insights that these results provide.

5.1. Consensus

When players play this game with incomplete information
over a network, how much do they learn of each other’s
private information? Perhaps not all, but Theorem 1 asserts
that they achieve a steady state in which they have no rea-
son to suspect they have not. Indeed, the claim in The-
orem 1 is that given any pair of players i and j , their
strategies ëit and ëjt approach each other as the number
of plays grow, with probability one. Since the players use
a common strategy in the limit, we say that they achieve
consensus. In this consensus state players select identi-
cal actions, which they therefore must believe to be opti-
mal given all their available information and the strategies
of other players. Otherwise, deviations to strategies with
better expected payoffs would be possible. To emphasize
that players achieve this possibly misguided consensus, we
show in Corollary 1 that the payoffs of all players eventu-
ally coincide.
That players achieve consensus is not unexpected given

that the game being played is a symmetric supermodular
game. If the state of the nature à were known to the players,
they would all play a common action in any equilibrium
of the game. When the state of the world is not known
but rather inferred from private signals and the observed
actions of neighboring players, the incentive to coordinate
is still present, but there is uncertainty on what exactly a
coordinated action should be. Theorem 1 shows that such
uncertainty is eventually resolved.
Expected as it may be, the result in Theorem 1 is not

obvious because it is not clear that the uncertainty on what
it means to have a coordinated action is resolved. The fun-
damental problem in resolving this uncertainty is that play-
ers have to guess the actions other players are about to take,
yet they only know their strategies and observe only their
realized actions. If other players’ histories were observed,
the incentive to coordinate, that is implicit in the supermod-
ular assumption, would drive players to consensus. How-
ever, histories are not observed. The strategies of players
other than i are, indeed, not necessarily measurable with
respect to the information available to i. Lacking measur-
ability, it is not possible for i to gauge the quality of his
actions given the strategies of his neighbors.
The key step in the proof of Theorem 1 is to show that

the strategies of neighbors become measurable in the limit.
When strategies become measurable, it is possible for i to
imitate j , if it so happens that the strategy of j is better.
Since the player i acts with respect to MBE strategy, imi-
tating j’s strategy cannot be optimal. It follows that the
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strategy of j is not better than the strategy of i according
to i. Yet, strategic complementarity implies that i cannot
think that his strategy in the limit is better than j’s limit
strategy and vice versa, and at the same time their strategies
be different.

According to Corollary 1, the differences between the
players’ payoffs asymptotically vanish. Thus, in spite of the
differences in their location in the network and the quality
of their private signals, players asymptotically receive simi-
lar payoffs. From the point of view of the players, however,
the asymptotic payoffs are not necessarily the same. That is,
conditional expectations of the players’ limit payoffs given
their information at the end of the game could be dissimilar.
The following example illustrates this possibility.

Example 1. Consider two roles i 2 81129 with payoffs
given by (5) that observe each others’ actions in all stages.
The common prior is the uniform distribution over the
set 8É21É111129. Player 2 receives no signal (S2 = ô),
whereas Player 1’s private signals belong to the set S1 =
81129, with s1 = óàó. Thus, Player 1 is informed of the abso-
lute value of à. Observe that in any equilibrium of the game
ëit = 0 at all times and for both players, Player 1 learns
the absolute value of à, whereas Player 2 never makes any
informative observations. At the end of the game, Player 1’s
expected payoff conditional on his information is equal to
É41Éã5óàó2 whereas the corresponding payoff for Player 2
is given by É41Éã5 52 .

In the above example, although the conditional expected
payoffs are unequal for any realization of the state, the
unconditional expected payoffs and the realized payoffs are
the same for both players because Theorem 1 and Corol-
lary 1 apply.

We remark that strategic complementarity is the main
driver of the consensus results. In particular, in games with
strategic substitutes, it is beneficial for the players to play
different strategies. The games wherein players’ actions
are strategic substitutes might not even have any symmet-
ric pure-strategy Nash equilibrium (e.g., the hawk-dove
game). Hence, the consensus results cannot be generalized
to games with strategic substitutability.

5.2. Information Aggregation

As we noted in §5.1, achieving consensus means that play-
ers have no reason to suspect there is more information
to be learnt, but this does not necessarily mean that they
have aggregated all the available information. To under-
stand the difference, it is instructive to consider the follow-
ing example.

Example 2. Consider two roles i 2 81129 with players
having the utility of the form in (5). The players in the
two roles observe each others’ actions in all stages. The
state of the world à belongs to the set ‰ = 8É1119. Ini-
tially, players have uniform common prior. They receive
private signals belonging to the set S1 = S2 = 8H1T9. As in

the baseline model of §2, only the initial short-run players
receive a signal, and the distribution of s = 4s11 s25 condi-
tional on à is given by

s4à5⇠

8
<

:

1
2Ñ4H1H5 +

1
2Ñ4T1T5 if à= 11

1
2Ñ4H1T5 +

1
2Ñ4T1H5 if à=É11

where Ñs is the degenerate probability distribution with unit
mass on the signal profile s 2 S. We first show that, in
the unique equilibrium of the game, players in both roles
choose ëit = 0 for all t. Given the distribution of s1 and s2,
each player in the first stage receives the signal H (T)
with probability one half, regardless of the realization of à.
Players’ private signals are thus completely uninformative
about the realized state, and hence their expectation of à
is equal to zero: ⇧6à ó H i17 = 0. Since the distribution of
s is common knowledge, each player knows that the other
player’s expectation of à is also zero. As a result, the equi-
librium action of initial players is ëi1 = 0 for i 2N . These
actions reveal no information to the players in the subse-
quent stages. Therefore, the short-run players in subsequent
stages all continue to choose the zero action.
Next, consider the alternative setting in which both play-

ers observe the complete signal profile s = 4s11 s25. In this
modified game, both of the short-run players playing in the
first stage learn the realized state. Therefore, in equilibrium
of the modified game players in both roles choose ëit = à
for all t æ 1 and given any realization of à.

In the above example players achieve consensus on their
strategy, as it should be because Theorem 1 applies, but the
consensus strategy is not the one they would use if they
had access to each others’ private signals. The question
then arises as to which conditions can prevent this failure
to aggregate information through repeated network inter-
actions. To answer this question, we restrict attention to
utilities that have the quadratic form shown in (5).
The game in Example 2 has a quadratic utility, yet this

restriction is not sufficient to guarantee information aggre-
gation. Observe, however, that the parameters in Example 2
have been fine-tuned to make sure that private signals are
uninformative about the state of the world when taken sep-
arately but informative when taken together. This causes
players to take equilibrium actions that reveal no informa-
tion about their private signals, although the signals contain
useful information about the realized state. However, the
delicate balance of parameters that creates this behavior is
broken if we have infinitesimal variations in any parameter.
In that sense, Example 2 is not generic in that it represents
an isolated example that cannot be drawn if we consider
games that are selected from a residual set.
Theorem 2 states that in network games with quadratic

utilities, we can have examples where players fail to aggre-
gate information, but these examples are nongeneric in
the space of probability measures over 4Ï1B5 endowed
with the total variation metric. Conversely, network games
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Figure 1. The ring and star social networks of
Example 3.

1

2

3 4

5

61

(a) The ring social network

2

3

4

5

6

1

(b) The star social network

with quadratic utilities aggregate information in a set that
is dense in 4Ï1B5. This means that failure to aggregate
information is not a practical concern when utilities are
quadratic. In practically all possible games of incomplete
information, players not only achieve consensus on their
strategies but also converge to the strategy defined by the
expectation EP 6à ó HëP

à
7. This means that players end up

playing the same action that would be selected by an omni-
scient planner that has access to all the private signals of
all players. The question of whether this is also true for
general supermodular utilities remains open.

An important special case of Theorem 2 is obtained by
letting ã= 0. In this case, the players only attempt to form
the best possible estimate of the state given the informa-
tion available to them. Their equilibrium actions are in turn
simply their estimate of à conditional on their informa-
tion. The players’ problem then becomes an instance of
social learning. Theorem 2 states that the players asymp-
totically learn to estimate the state as if they had access
to all the available information. In this sense, Theorem 2
parallels and complements some of the earlier optimality
results in the Bayesian social learning literature. In partic-
ular, it extends Theorem 4 of Mueller-Frank (2013) to the
case where the players face payoff externalities in addition

Figure 2. (Color online) Evolution of the agents’ actions over time in Example 3.
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to information externalities. It also extends Proposition 4
of Jadbabaie et al. (2012) to the case where the players
communicate their conditional estimates of the state, rather
than their entire beliefs. Finally, it also relates to the infor-
mation aggregation result presented in Ostrovsky (2012) for
dynamic markets with “separable” securities. The notion
of separability rules out fine-tuned payoff and prior beliefs
such as the one in Example 2. Our results complement the
work in Ostrovsky (2012) in that we show that—even when
the players’ partition of the state space does not satisfy the
separability condition—information aggregation is generi-
cally obtained.
The following numerical example illustrates the evolu-

tion of the players’ actions over time and their convergence
to the optimal action given a setting where the state and
the private signals are normally distributed.

Example 3. There are n= 6 players over a fixed strongly
connected social network playing the game with payoffs
given by (5) with ã = 2/3. We consider two network
topologies: a directed ring network depicted in Figure 1(a)
and a star network depicted in Figure 1(b). The common
prior over à is given by the standard normal distribution
N 40115. The signal spaces are given by S1 = S2 = ✓. We
assume that, conditional on à, s1 and s2 are independent and
distributed according to N 4à115. Note that only the initial
players receive informative signals. The evolution of the
players’ actions over time is depicted in Figure 2 for two
realizations of the path of play with à= 0. The dashed line
represents the payoff-maximizing action given the players’
private signals—which in the context of this example is
equal to the average of the private signals. At t = 1, players
each receive a private signal and choose the actions that
are equal to their private signals. Yet, as time passes, the
players’ actions converge to the payoff-maximizing action.
Moreover, over both of the networks, convergence is com-
plete after a number of time periods equal to the diameter
of the graph.11

In this example, although the players’ signal spaces are
not finite, convergence to the optimal action is achieved.12



Molavi et al.: Learning to Coordinate in Social Networks
614 Operations Research 64(3), pp. 605–621, © 2016 INFORMS

5.3. Extensions

Some extensions have been also provided in §4 for the
special case of quadratic payoffs. Theorem 3 states that
consensus happens for quadratic utilities even if we allow
for time-varying networks and endogenous signals. The
allowance for time-varying networks extends our results to
cases where interactions between players are not synchro-
nized to a common clock as is assumed in §3. Whenever
a pair of players interact, we can define a network with
a single edge that joins the pair of players. This defini-
tion pigeonholes asynchronous interactions into the time-
varying network model of §4. The allowance for endoge-
nous signals includes, as a particular case, situations in
which players observe their own payoffs.

In contrast to the consensus results, the information ag-
gregation result in Theorem 2 cannot be extended to the
case with endogenous signals. The following example illus-
trates that the correct notion of information aggregation is
unclear when signals are endogenous.

Example 4. Consider a single player who repeatedly plays
a game with payoffs as in (5) with ã = 0. The player’s
prior for à is given by the standard normal N 40115. His
first stage signal is distributed according to N 4à115. The
signal st observed at t æ 2 is distributed as follows:

st4à5⇠

(
N 4à115 if óàÉ a1ó> 11
N 40115 if óàÉ a1ó∂ 10

The player observes an informative signal and chooses an
action in the first stage. If his stage one action is not within
unit distance of the realized state, he continues to observe
informative private signals and asymptotically learns the
state with arbitrary precision. However, if the player’s first
stage action is sufficiently close to the realized state, he
does not observe any informative signals after the first stage
and thus never learns the state.

In this example, there is an externality associated with
the effect of the action of the player in stage one on the dis-
tribution of the private signals observed by his successors.
If the player is myopic (or sufficiently impatient), this infor-
mational externality is not internalized in the equilibrium.

This example illustrates the path-dependence that learn-
ing with endogenously generated signals can exhibit: The
total amount of information available to the players is not
fixed; rather it is a function of the realized path of play.
Consequently, no well-defined notion of optimal aggrega-
tion of information is readily available when signals are
endogenous.

Throughout, we assumed that the network is strongly
connected over time. When the network is not strongly
connected, our results do not continue to hold. Consider a
single role i that is disconnected from the rest of the net-
work, and assume that the initial player in each role only
observes a single noisy signal of the state. Unless all play-
ers happen to be perfectly informed of the state, the players

in the disconnected role i will not be in agreement with
the rest of the population. Note that this is also true when
the other players can observe the actions of the players in
role i but the players in role i cannot observe any other
player in the network.
Some other extensions are beyond the scope of this

paper. For instance, our results are stated for myopic play-
ers, but players that optimize for longer time horizons have
even stronger incentives to signal their information. There-
fore, it is reasonable to expect that all of our theorems hold
in this case as well. In fact, it is likely that stronger results
can be derived because nonmyopic Markovian players may
be able to aggregate information even if the short-run play-
ers cannot.

6. Symmetric Supermodular Games
We present four examples of symmetric strictly super-
modular games of incomplete information to illustrate the
range of models to which our consensus results in §3 are
applicable.

6.1. Currency Attacks

Consider investors who attack a currency by short-selling
the currency by ai 2 60117 amounts. There is a fixed trans-
action cost of short selling, Éc < 0, when investor i attacks
ai > 0; otherwise, his cost is zero. The strength of the
attack is proportional to the average short-selling actions
of the investors: ā =

P
i ai/n. The government follows a

thresholded policy to defend against the investors’ attacks
based on the fundamentals of the economy à. That is, if
the attack strength is larger than h4à5 2 40117 where h4 · 5
is an increasing function of à, then the government does
not defend; otherwise, it defends. When the government
defends, the attack fails and the investors incur the transac-
tion cost. When the government does not defend, the attack
succeeds and each investor receives a benefit proportional
to his short-selling amount, Bi4ai5> 0, which is a continu-
ous strictly increasing function. However, the investors do
not exactly know fundamentals of the economy and only
have private information regarding à. We smooth the gov-
ernment’s threshold response by assuming that the likeli-
hood that ā is larger than h4à5 is given by L4h4à53 ā5,
which is a continuous and strictly increasing function of ā
given à. Then the payoff of an investor is summarized as
follows.

ui4ai1aÉi1 à5=

(
Bi4ai5L4h4à53 ā5É c if ai > 01
0 if ai = 00

Under certain assumptions, the utility function above is
strictly supermodular. For instance, it is easy to show that
the likelihood function L4h4à53 ā5= ā2/4ã+h4à525 results
in a strictly supermodular utility function for all ã æ 1.
Furthermore, the utility function is symmetric, since each
investor’s attack contributes equally to the strength of the
attack. See Vives (2005) for a variant of this game.
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6.2. Bertrand Competition

Consider an oligopoly price competition model where the
demand for firm i is determined by the price set by firm i,
ai 2 60117, as well as prices of its competitors aÉi. That
is, firm i’s demand function is Di4ai1aÉi5. The demand of
firm i is decreasing in its own price ai and increasing with
respect to prices of others aÉi. The revenue of firm i is its
price multiplied by the demand, aiDi4ai1aÉi5. Each firm
operates with an identical uncertain cost per production à.
Then the cost of matching demand Di4ai1aÉi5 by firm i
is àai. The payoff of firm i is its net revenue, which is the
difference between revenue and cost,

ui4ai1aÉi1 à5= aiDi4ai1aÉi5É àai0

We consider a logistic demand function Di4a5 = 1/41 +P
j 6=i ä exp4ã4ai É aj555 for ä> 0 and ã> 0. This demand

function yields a symmetric strictly supermodular utility
function. See Milgrom and Roberts (1990) for other forms
of demand functions that result in supermodular utilities.

6.3. Power Control in Wireless Networks

Consider the problem of power control in wireless network
communication; see Altman and Altman (2003). Each user
wants to transmit to a base station using the channel des-
ignated to himself. User j determines a transmitting power
level ai 2 601 â7 for some â > 0. The channel gain of user i
transmitting to base station is equal to h> 0, which is iden-
tical for all the users. Hence, the received signal of user i at
the base station is aih. On the other hand, the transmission
of other users interferes with the gain of user i’s channel.
Given the channel gains h, the signal-to-interference-ratio
(SINR) is given by

SINR4aÉi5=
h

h
P

j 6=i aj +ê
1

where ê> 0 is the additive Gaussian noise representing the
noise at the base station. Thus the received SINR by user i
when it exerts ai amounts of power is simply aiSINRi4aÉi5.
User i incurs a constant uncertain cost à per unit of power
exerted yielding a total cost of àai when ai units of power
is exerted. The payoff of user i is the difference between
a function of the received SINR Bi4aiSINRi4aÉi55 and the
cost of power consumption,

ui4ai1aÉi1 à5= Bi4aiSINRi4aÉi55É àai0

Under certain conditions on the function Bi4 · 5, the pay-
off is strictly supermodular. For instance, given Bi4x5 =
x1ÉÅ/41ÉÅ5 where Å> 1, we have °2ui/°ai°aj > 0. Sym-
metry of the utility function follows by the definition of the
SINR and the unanimity of the channel gain h.

6.4. Arms Race

N countries engage in an arms race; see Milgrom and
Roberts (1990). Country i chooses its arms level ai 2 601 â7
and incurs a cost of armament that is captured by the cost
function Ci4ai1 à5 that depends on the state of the world à
and own action ai. The benefit of the armament depends on
the distance between self arms, ai, and the average arma-
ment of other countries, āÉi =

P
j 6=i aj/4nÉ15, captured by

a strictly concave smooth function Bi4aiÉ āÉi5. The payoff
of country i is given by

ui4ai1aÉi1 à5=ÉCi4ai1 à5+Bi4ai É āÉi50

Since °2ui/°ai°aj =ÉB00

i 4ai Éaj5> 0, the game is strictly
supermodular. Furthermore, by construction, the utility
function is symmetric.

7. Proofs

7.1. Proof of Proposition 2

This proposition is a special case of Proposition 3 proved
below.

7.2. Proof of Proposition 3

The proof is constructive. We start at t = 1 and inductively
construct the unique equilibrium. Let 6ǎ1 â7 be such that
Ai ✓ 6ǎ1 â7.
Consider stage t = 1. We show that the game played in

the first stage is dominance solvable in the sense that each
player has a unique rationalizable strategy.13 We use the fol-
lowing procedure to iteratively eliminate strictly dominated
strategies. The strategy that survives is the unique rational-
izable strategy profile and thus also the unique equilibrium.
First consider all the possible beliefs that each player can
entertain about other players’ actions, the payoff-relevant
state, and the private signals such that the belief is consis-
tent with the player’s prior belief and his observed private
signal. Any strategy for player i1 that is not a best response
to some such belief is eliminated in the first round. Next
consider the set of all beliefs that in addition to consis-
tency are restricted to only put positive probability on the
strategies that were not eliminated in the previous round
and eliminate the strategies that are not best responses to
any such belief. We repeat the procedure ad infinitum. The
strategy profile surviving this iterated elimination procedure
is the unique equilibrium.
Let Pi1 be the belief player i1 entertains about the state,

signals, networks, and what other players do in stage 1. Pi1

is a transition probability from Ï to Ï⇥AÉi. Player it’s
best response to this belief is then given by the following
first-order condition:

ëi1 = 41Éã5Ei16à7+
ã

nÉ 1

X

j 6=i

Ei16aj171
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where Ei1 is the expectation operator with respect to Pi1.
Each player’s actions are restricted to belong to the interval
6ǎ1 â7. Thus,

41Éã5Ei16à7+ãǎ∂ ëi1 ∂ 41Éã5Ei16à7+ãâ0

Pi1 needs to be consistent with the P1, defined in §4.2, and
player i1’s observation of signal si1. Therefore, Ei16à7 =
E16à óH i17 and so

41Éã5E16à óH i17+ãǎ∂ ëi1 ∂ 41Éã5E16à óH i17+ãâ1

where E1 is the expectation operator with respect to P1.
Thus, the strategies not belonging to the interval 641É ã5
E16à óH i17+ãǎ1 41Éã5E16à óH i17+ãâ7 are eliminated in
the first round of elimination.

Given that each j1’s actions belong to the inter-
val 641Éã5E16à óH j17+ãǎ1 41Éã5E16à óH j17+ãâ7, the
support of player i1’s belief Pi1 need to be contained in
641É ã5E16à ó H j17+ ãǎ1 41É ã5E16à ó H j17+ ãâ7. Thus,
any rationalizable strategy for player i1 needs to satisfy the
following restrictions:

ëi1 æ 41Éã5E16à óH i17

+
ã41Éã5

nÉ 1

X

j 6=i

E16E16à óH j17 óH i17+ã2ǎ1

ëi1 ∂ 41Éã5E16à óH i17

+
ã41Éã5

nÉ 1

X

j 6=i

E16E16à óH j17 óH i17+ã2â0

This procedure can be repeated ad infinitum. Define
à̄k
i1 recursively as follows: à̄1

i1 = E16à ó H i17 and à̄k+1
i1 =P

j 6=i E16à̄
k
j1 óH i17/4nÉ 15. Then for any kæ 1,

41Éã5
kX

l=1

ãlÉ1à̄l
i1 +ãkǎ∂ ëi1 ∂ 41Éã5

kX

l=1

ãlÉ1à̄l
i1 +ãkâ0

The difference between the upper and lower bounds on ëi1
in the kth stage of elimination is given by ãk6ǎÉ â7. Since
ã < 1 and à̄k

i belongs to ‰ which is a compact set, as k
goes to infinity, the upper and lower bounds converge to
the same value and a strategy ëi1 survives that is unique
up to sets of P1-measure zero:

ëi1 = 41Éã5
àX

k=1

ãkÉ1à̄k
i10

The game played in stage 2 is similar to the game played
in the first stage with the exception that the information of
player i2 is now given by H

ë1

i2 . An argument similar to the
one above shows that there exists an equilibrium strategy
for the stage 2 short-run players that is unique up to sets
of Pë1

2 -probability zero. More generally, by induction, there
exists a unique equilibrium that in stage t is given by the
following expression:

ëit = 41Éã5
àX

k=1

ãkÉ1à̄k
it1 (6)

where

à̄1
it =Eë tÉ1

tÉ1 6à óH
ë tÉ1

it 7 and

à̄k+1
it =

X

j 6=i

Eë tÉ1

tÉ1 6à̄
k
jt óH

ë tÉ1

it 7/4nÉ 150

7.3. Proof of Proposition 4

Since à belongs to a compact set‰ andHë
it "H

ë
i , by the mar-

tingale convergence theorem, à̄1
it! à̄1

ià, P
ë -almost surely,

where à̄1
ià=Eë 6à óHë

ià7. Suppose that à̄
k
it! à̄k

ià, P
ë -almost

surely, for some k, where à̄k+1
ià =

P
j 6=iE

ë 6à̄k
jà óHë

ià7/4nÉ15
for all kæ1. Then by the dominated convergence theorem
for conditional expectation, à̄k+1

it ! à̄k+1
ià , Pë -almost surely.

Therefore, à̄k
it! à̄k

ià, P
ë -almost surely, for all kæ1.

Define

ëià = 41Éã5
àX

k=1

ãkÉ1à̄k
ià0 (7)

We show that ëit ! ëià almost surely. Fix some arbitrary
Ö > 0. Since ã < 1 and óà̄k

itó ∂ max‰ óàó <à, there exists
some K1 æ 1 such that
����41Éã5

àX

k=K1+1

ãkÉ1à̄k
it

����∂
Ö

3
1

for all t. Likewise, there exists some K2 æ 1 such that
����41Éã5

àX

k=K2+1

ãkÉ1à̄k
ià

����∂
Ö

3
0

Let K =max8K11K29. Since à̄k
it ! à̄k

ià almost surely for all
k æ 1, for Pë -almost all ó 2Ï there exists some T such
that 41É ã5ãkÉ1óà̄k

it É à̄k
iàó< Ö/3K for all k∂K. If t æ T ,

then

óëitÉëiàó∂41Éã5
KX

k=1

ãk
óà̄k

itÉ à̄k
iàó+

����41Éã5
àX

k=K+1

ãkÉ1à̄k
it

����

+

����41Éã5
àX

k=K+1

ãkÉ1à̄k
ià

����∂Ö0

Thus, since Ö > 0 was arbitrary and convergence is for a
set of full measure, ëit ! ëià, Pë -almost surely.

7.4. Proof of Theorem 3

Let i1 j be a pair of roles such that i observes the actions
of j infinitely often almost surely. Define the mappings
ë 0

it2 Ï! Ai as follows: ë 0

i1 = Eë 6à ó H i17, and for t æ 2,
ë 0

it = ëj1 tÉ1 if j 2 Nit , and ë 0

it = ë 0

i1 tÉ1 otherwise. Since ë
is an equilibrium,

Eë 6ui4ëit1ëÉit1 à5 óH
ëtÉ1
it 7æEë 6ui4ë

0

it1ëÉit1 à5 óH
ëtÉ1
it 7

Pë -a0s0

Take expectations of the above inequality with respect
to Eë . For any ó for which ëjt ! ëjà and j 2Ni infinitely
often, ë 0

it ! ëjà. Therefore, by the dominated convergence
theorem,

Eë 6ui4ëià1ëÉià1 à57æEë 6ui4ëjà1ëÉià1 à570



Molavi et al.: Learning to Coordinate in Social Networks
Operations Research 64(3), pp. 605–621, © 2016 INFORMS 617

A similar argument can be used to show that

Eë 6uj4ëjà1ëÉjà1 à57æEë 6uj4ëià1ëÉjà1 à570

By the connectivity assumption, there exists a sequence
of roles i01 i11 i21 0 0 0 1 in starting and ending with the same
role that includes each role other than i0 exactly once, and
such that, for all k, players in role ik observe the ones in
role ik+1 infinitely often almost surely. For any k, by the
above argument

Eë 6ui4ëikà
1ëÉikà

1 à57æEë 6ui4ëik+1à
1ëÉikà

1 à570 (8)

Summing over k and reindexing the right-hand-side sum
imply

nÉ1X

k=0

Eë 6ui4ëikà
1ëÉikà

1 à57æ
nX

k=1

Eë 6ui4ëikà
1ëÉikÉ1à

1 à570

Expanding both sides of the inequality, all terms except for
one cancel resulting in

nÉ1X

k=0

Eë


ëikà

X

j 6=k

ëijà

�
æ

nX

k=1

Eë


ëikà

X

j 6=kÉ1

ëijà

�
0

Further simplification results in

nX

k=1

Eë 6ëikà
ëikÉ1à

7æ
nX

k=1

Eë 6ë2
ikà

70 (9)

On the other hand,
Pn

k=1E
ë 64ëikà

É ëikÉ1à
527 æ 0 with

equality if and only if ëikà
= ëikÉ1à

for all k with Pë -
probability one. Thus, using the fact that

Pn
k=1E

ë 6ë2
ikà

7=Pn
k=1E

ë 6ë2
ikÉ1à

7, we can conclude that

nX

k=1

Eë 6ë2
ikà

7æ
nX

k=1

Eë 6ëikà
ëikÉ1à

71 (10)

with equality if and only if ëikà
= ëikÉ1à

for all k, Pë -
almost surely; Equation (9) implies that (10) indeed holds
with equality. Thus, for all i and j and with Pë -probability
one, ëià = ëjà. Together with Proposition 4, this completes
the proof of the theorem.

7.5. Proof of Corollary 2

The corollary immediately follows Proposition 4, Theo-
rem 3, and the assumption that the utility functions are
continuous.

7.6. Proof of Theorem 2

Before proving the theorem, we first prove a technical
lemma.

Lemma 1. Let 4X1B5 be a measurable space, and let
4P1d5 be the metric space where P is the collection of all
probability measures on 4X1B5 and d is the total variation
distance. Let F 1 and F 2 be two arbitrary sub ë-algebras
of B, let F be the ë-algebra generated by the union of
F 1 and F 2, and let f be an arbitrary bounded random
variable. The set

Q= 8P 2 P2 EP 6f óF 17=EP 6f óF 27 6=EP 6f óF 791

is nowhere dense in the metric space 4P1d5.

Proof. To prove the lemma, we use Dynkin’s è-ã theo-
rem. Let us first construct the appropriate ã and è-systems.
For any P 2 P, define

ÂP =

⇢
B2B2

Z

B
f dP=

Z

B
EP 6f óF 17dP=

Z

B
EP 6f óF 27dP

�
0

We first verify that for any P 2 P, the set ÂP is a ã-
system of subsets of X. (i) By the law of total expectation
X 2 ÂP . (ii) Let Bc denote the complement of B in X. If
B 2ÂP , then
Z

Bc
f dP =

Z

X
f dP É

Z

B
f dP

=

Z

X
EP 6f óF 17dP É

Z

B
EP 6f óF 17dP

=

Z

Bc
EP 6f óF 17dP 0

We also have a similar equality for F 2. Therefore, Bc 2ÂP .
(iii) If B11B21 0 0 0 is a sequence of subsets of X in ÂP such
that Bi \Bj =ô for all i 6= j , then by the countable addi-
tivity of the integral,

Z
S

à
i=1 B

f dP =

àX

i=1

Z

Bi

f dP =

àX

i=1

Z

Bi

EP 6f óF 17dP

=

Z
S

à
i=1 B

EP 6f óF 17dP 0

We also have a similar equality for F 2. Therefore,S
à

i=1Bi 2ÂP . This proves that ÂP is a ã-system. Consider
next the set Á defined as

Á= 8A1 \A22 A1 2F 11A2 2F 290

F 1 and F 2 are ë-algebras; thus, Á is nonemepty and closed
under intersections. This proves that Á is indeed a è-
system of subsets of X. It is also easy to verify that ë4Á5=
ë4F 1 [F 25=F .
Define the set R◆Q as

R= 8P 2 P2 EP 6f óF 17=EP 6f óF 2790

We consider the following two cases: If R is nowhere dense
in P, then Q is nowhere dense in P, and we have the desired
result. If, on the other hand, R is not nowhere dense in P,
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then it must be somewhere dense in it. Let U be the col-
lection of all open subsets u of P, such that there exists no
nonempty open set v contained in u such that v and R are
disjoint. We prove that Q is nowhere dense in R by show-
ing that any such u contains an open subset that is disjoint
from Q. Let u be an arbitrary set in U, and let bÖ be an
open ball of radius Ö in the interior of u. In what follows,
we first show that for every Q 2 bÖ, we have Á✓ÂQ. Let
A1 2 F 1 and A2 2 F 2 be arbitrary sets with C = A1 \A2.
Since A1 2F 1, by the definition of conditional expectation,
for all Q 2 bÖ,
Z

A1

f dQ=

Z

A1

EQ6f óF 17dQ0

Therefore,
Z

A1\C
f dQ+

Z

C
f dQ

=

Z

A1\C
EQ6f óF 17dQ+

Z

C
EQ6f óF 17dQ0 (11)

On the other hand, since R is dense in bÖ, for any Q 2 bÖ,
there exists a sequence 8Qk9k2� such that Qk 2 bÖ \ R
for all k, and Qk converges in the total variation distance
to Q. Therefore, EQk

6f óF 17 converges in Q-probability to
EQ6f óF 17.14 Therefore, since f is bounded and Qk con-
verges in total variation distance to Q,
Z

A2

EQk
6f óF 17dQk !

Z

A2

EQ6f óF 17dQ1 (12)

and
Z

A2

f dQk !

Z

A2

f dQ0 (13)

Moreover, for all k,
Z

A2

f dQk=

Z

A2

EQk
6f óF 27dQk=

Z

A2

EQk
6f óF 17dQk1 (14)

where the first equality is by the definition of conditional
expectation and the assumption that A2 2 F 2, and the sec-
ond equality is a consequence of the fact that Qk 2 R.
Equations (12)–(14) imply that
Z

A2

f dQ=

Z

A2

EQ6f óF 17dQ0

And hence,
Z

A2\C
f dQ+

Z

C
f dQ

=

Z

A2\C
EQ6f óF 17dQ+

Z

C
EQ6f óF 17dQ0 (15)

We use (11) and (15) to conclude that
R
C f dQ=

R
C EQ6f ó

F 17dQ for all Q 2 bÖ. Pick some arbitrary Q 2 bÖ. If
Q4A15 = 0 or Q4A15 = 1, by boundedness of f we are

done. If 0 < Q4A15 < 1, for any Ñ 2 40115 construct the
measure Q̂Ñ over 4X1B5 as follows: for any B 2B,

Q̂Ñ4B5= 41+ÑQ4Ac
155Q4B\A15+41ÉÑQ4A155Q4B\Ac

150

It is easy to verify that Q̂Ñ is indeed a probability measure.
We next show that EQ̂Ñ

6f ó F 17 = EQ6f ó F 17. Let B 2 F 1
be arbitrary.
Z

B
f dQ̂Ñ

=

Z

B\A1

f dQ̂Ñ +

Z

B\Ac
1

f dQ̂Ñ

= 41+ ÑQ4Ac
155

Z

B\A1

f dQ+ 41É ÑQ4A155
Z

B\Ac
1

f dQ

= 41+ ÑQ4Ac
155

Z

B\A1

EQ6f óF 17dQ

+ 41É ÑQ4A155
Z

B\Ac
1

EQ6f óF 17dQ

=

Z

B\A1

EQ6f óF 17dQ̂Ñ +

Z

B\Ac
1

EQ6f óF 17dQ̂Ñ

=

Z

B
EQ6f óF 17dQ̂Ñ1 (16)

where the third equality follows from the assumption that
EQ6f ó F 17 is a conditional expectation of f given F 1 and
the fact that B\A1 2F 1 and B\Ac

1 2F 1. Since EQ6f óF 17
is F 1-measurable, Equation (16) proves that EQ6f ó F 17 is
a version of EQ̂Ñ

6f ó F 17. Let B1 = A1\C and B2 = A2\C.
Equations (11) and (15) imply that
Z

B1

6f ÉEQ6f óF 177dQ=

Z

B2

6f ÉEQ6f óF 177dQ0 (17)

Since B1 \A1 = B1,
Z

B1

6f ÉEQ̂Ñ
6f óF 177dQ̂Ñ

= 41+ ÑQ4Ac
155

Z

B1

6f ÉEQ6f óF 177dQ0 (18)

Likewise, since B2 \Ac
1 = B2,

Z

B2

6f ÉEQ̂Ñ
6f óF 177dQ̂Ñ

= 41É ÑQ4A155
Z

B2

6f ÉEQ6f óF 177dQ0 (19)

On the other hand, if Ñ is sufficiently small, Q̂Ñ 2 bÖ. There-
fore, by (11) and (15),
Z

B1

6f ÉEQ̂Ñ
6f óF 177dQ̂Ñ=

Z

B2

6f ÉEQ̂Ñ
6f óF 177dQ̂Ñ0 (20)

Equations (17)–(20) imply that
Z

B1

6f ÉEQ6f óF 177dQ=

Z

B2

6f ÉEQ6f óF 177dQ=00 (21)
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Thus, by (11),
Z

C
f dQ=

Z

C
EQ6f óF 17dQ0

A similar argument shows that for all Q 2 bÖ,
Z

C
f dQ=

Z

C
EQ6f óF 27dQ0

Therefore, A1 \ A2 2 ÂQ for every Q 2 bÖ. Since A1 and
A2 were arbitrary, this shows that Á 2 ÂQ for all Q 2 bÖ.
Therefore, by the Dynkin’s è-ã theorem, ë4Á5=F ✓ÂQ

for Q 2 bÖ; that is, for any A 2F ,
Z

A
f dQ=

Z

A
EP 6f óF 17dQ=

Z

A
EP 6f óF 27dQ0

Together with the fact that EQ6f ó F 17 and EQ6f ó F 27
are both measurable with respect to F , this shows that
EQ6f óF 7= EQ6f ó F 17= EQ6f ó F 27 for all Q 2 bÖ. Thus,
bÖ and Q are disjoint. Recall that the set u 2U was arbi-
trary. Therefore, for any set u in U, there exists some v
contained in u such that v and Q are disjoint. This shows
that Q is nowhere dense in P. É

7.6.1. Proof of Theorem 2. By the definition of à̄k
ià

and Equation (7),

ëià = 41Éã5
àX

k=1

ãkÉ1à̄k
ià

= 41Éã5⇧6à óHë
ià7

+ 41Éã5ã
àX

k=1

ãkÉ1
X

j 6=i

⇧6à̄k
jàH

ë
ià7/4nÉ 15

= 41Éã5⇧6à óHë
ià7

+ã
X

j 6=i

⇧


41Éã5

àX

k=1

ãkÉ1à̄k
jà óH

ë
ià

�
/4nÉ 15

= 41Éã5⇧6à óHë
ià7+ã

X

j 6=i

⇧6ëjà óH
ë
ià7/4nÉ 151

where in the second line the order of integrals are changed
using Fubini’s theorem and the fact that by compactness of
‰ the sums are finite. By Theorem 3, ëià = ëjà, ⇣ -a.s.,
for all i1 j 2N . Therefore, the above equation implies that

ëià = ⇧6à óHë
ià71

and so

⇧6à óHë
ià7= ⇧6à óHë

jà71 8 i1 j 2N 0

Let S be the smallest sub-sigma algebra of B that makes
s = 4s11 0 0 0 1 sn5 measurable. By Lemma 1, for any sub-
sigma algebras S 1, S 2 of S , the set

M4S 11S 25

= 8P 2 P2 EP 6à óS 17=EP 6à óS 27 6=EP 6à óS 1 _S 279

is nowhere dense in 4P1d5. Since S is finite, it has only a
finite number of sub-sigma algebras. Therefore, the set

M=
�
P 2 P2 EP 6à óS 17=EP 6à óS 27 6=EP 6à óS 1 _S 27

for some S 11S 2 ✓S
 

is also nowhere dense in 4P1d5. Let Hë
ijà = H

ë
ià _ H

ë
jà.

Since the information available to the players in any stage
of the game is no more than the information contained in
their private signals, Hë

ià ✓S for all i and ë . Thus, the set

Nij = 8P 2 P2 EP 6à óH
ë
ià7=EP 6à óH

ë
jà7

6=EP 6à óH
ë
ijà7 for some ë9

is also nowhere dense in 4P1d5. On the other hand, we
showed above that EP 6à óH

ëP

ià 7=EP 6à óH
ëP

jà7 for all P 2 P.
Therefore, for P in a residual subset of P, EP 6à óH

ëP

ià 7 =
EP 6à ó HëP

ijà7. By a similar argument, for P in a residual
subset of P, EP 6à ó HëP

ià 7 = EP 6à ó HëP

ijkà7, where H
ë
ijkà =

H
ë
ij _ H

ë
k . More generally, for P in a residual subset

of P, EP 6à óH
ëP

ià 7= EP 6à óH
ëP

à
7 for all i. This conclusion,

together with Theorem 3 and the argument in the first para-
graph of this proof, completes the proof of the theorem.

8. Conclusion
This paper studies a dynamic game in which a number
of short-run players repeatedly play a symmetric strictly
supermodular game of incomplete information. Each short-
run player inherits the beliefs of a player playing in the
previous stage while also observing the last stage actions
of the players in his social neighborhood. Each player’s
actions reveal information used by other players to revise
their beliefs and, hence, their actions. We prove formal
results regarding the asymptotic outcomes obtained when
agents play the actions prescribed by the Markov Bayesian
equilibrium. In particular, we show that players reach con-
sensus in their actions and payoffs if the observation net-
work is connected. We also show that, when the utility
functions are quadratic, the consensus action is generically
optimal. We also provide extensions of our consensus result
to a setting with time-varying and random networks and
endogenously generated signals, and we illustrate the logic
of our results through examples. Finally, we provide exam-
ples of games used in engineering and economics to which
our results apply.
The players in this paper are assumed to be short-run

and hence myopic. However, we expect our results to gen-
eralize to the case of forward-looking agents if attention
is restricted to Markovian strategies. In symmetric super-
modular games, the players’ interests are fully aligned, and
so they benefit from sharing the information available to
them with the rest of the population. But short-run players
cannot capture any of the benefits of sharing their infor-
mation. Nonetheless, as our results demonstrate, consensus
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and information aggregation are eventually obtained. With
forward-looking agents, the players’ incentive to inform
their peers provides an additional force that makes consen-
sus and information aggregation, if anything, more likely.
We intend to investigate this direction in future research.
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Endnotes
1. Strategic interactions in which players want to coordinate their
actions are best modeled by supermodular games in which the
players’ actions are strategic complements. Supermodular games
have a deep and interesting theory that has been developed by,
among others, Milgrom and Roberts (1990), Topkis (1998), Van
Zandt and Vives (2007), and Van Zandt (2010). For an excellent
survey of some of the theory and applications of supermodular
games see Vives (2005).
2. Since the players are short-lived, the set of equilibrium
outcomes generated by pure MBEs coincides with the set of
outcomes generated by pure perfect Bayesian equilibria (PBE).
However, even with myopic players, the set of mixed-strategy
MBEs could be strictly smaller than the set of mixed-strategy
PBEs since conditioning on history provides the players with
more opportunities to coordinate their actions.
3. The imitation principle was first introduced by Gale and Kariv
(2003) in a social learning model without strategic interactions.
4. See, for instance, Morris and Shin (2002) and Angeletos and
Pavan (2007, 2009), in which the authors study the role of the
provision of public information on social welfare, and Calvó-
Armengol and Beltran (2009) and Bramoullé et al. (2014), in
which equilibria of general quadratic network games are analyzed.
5. If f is twice differentiable, strict supermodularity is equivalent
to requiring that °2f /°xi°xj > 0 for all 1∂ i < j ∂ n. For more
on the theory of supermodular games and their applications in
game theory and economics, see Topkis (1998).
6. If ã æ 1, the game can have multiple equilibria. Yet, it still
belongs to the class of symmetric strictly supermodular games,
and so by Theorem 1 and Corollary 1, players asymptotically
reach consensus in their actions and payoffs.
7. We show that indeed the game can be solved by the iterated
elimination of dominated strategies. The iterative elimination is
a process that models the thinking process of rational player it
where it recursively refines his belief on the actions that other
players could take given the assumption that they are also rational.
For the current model, this iterative elimination eventually leads
to a single strategy profile being selected.
8. Given a topological space X, a subset A of X is a first category
or meager set if it can be expressed as the union of countably
many nowhere dense subsets of X. The complement of a first
category set is called a residual set.

9. Given measurable spaces 4X1X5 and 4Y 1Y5, a function
f 2 X⇥Y ! 60117 is called a transition probability from X to Y if
(i) for any given x 2X, f 4x56 · 7 is a probability distribution over
4Y 1Y5; and (ii) given any measurable set B 2 Y, the function
x 7! f 4x56B7 is measurable.
10. See, for instance, Theorem 49 in Chapter 4 of Pollard (2002).
11. The diameter of a directed network is defined as
maxi1 j `4i1 j5, where `4i1 j5 is the length of the shortest directed
path starting from i and ending at j .
12. For a recursive characterization of the players’ equilibrium
actions in the Bayesian quadratic network games similar to the
one studied in Example 3, see the complementary paper by the
authors (Eksin et al. 2014).
13. The notion of rationalizability we use is that of interim cor-
related rationalizability (ICR) introduced by Dekel et al. (2007).
14. This follows a result of Landers and Rogge (1976) (cf. The-
orem 3.3. of Crimaldi and Pratelli 2005).
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