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Abstract

I propose an equilibrium search and matching model with permanent worker heterogeneity,
asymmetric information, and endogenous separations and study the dynamics of adverse se-
lection in the labor market. The interaction between asymmetric information and endogenous
separations leads to a cyclical adverse selection problem that has testable predictions both for
the aggregate variables and for individual workers’ outcomes. First, a deterioration in the distri-
bution of ability in the pool of the unemployed leads firms to raise their hiring standards, thus
resulting in shifting out of the Beveridge curve. Second, if the separation rate is log-supermodular
(log-submodular) in productivity and ability, the pool of the unemployed becomes more (less)
adversely selected in downturns. Third, firms rationally discriminate against the long-term un-
employed by demanding more unequivocally positive signals of their ability before hiring them.
Fourth, this scarring effect is more (less) severe for lower-ability workers and after deeper reces-
sions if the separation rate is log-supermodular (log-submodular). I conclude by providing con-
ditions on the fundamentals of the economy that lead to log-supermodular and log-submodular
separation rates.
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1 Introduction

Although the Great Recession officially ended in the June of 2009, the U.S. unemployment rate con-

tinued to increase until hitting a high of 10 percent in the October of 2009. It took five more years for

employment to recover to the levels economists consider normal. The sluggish recovery in the labor

market combined with a fast recovery in other indicators of economic activity such as productivity

and corporate profits has lead economists to refer to the U.S. experience as a “jobless recovery.” What

is more, aggregate statistics obscure the different experiences of individual workers. Low-skilled

workers bore the brunt of the slack labor market. While the unemployment rate for workers with a

Bachelor’s degree remained below 5 percent throughout the recession and the recovery that ensued,

the unemployment rate among those with less than a high-school degree remained above 8 percent

well into the recovery. Education is not the only dimension along which workers experienced hetero-

geneous outcomes. Kroft, Lange, and Notowidigdo (2013) provide experimental evidence for “un-

employment scarring”: the long-term unemployed experience diminished employment prospects

regardless of their educational attainment.

This paper develops a theory of dynamic selection in the labor market that can provide an expla-

nation for jobless recoveries and unemployment scarring. I propose a search and matching model

featuring persistent differences among workers in their ability, asymmetric information about worker

ability, and layoff decisions by firms. Workers are heterogeneous in their ability. A worker’s ability is

perfectly observable to the worker and any firm that has previously hired the worker, but other firms

only observe noisy signals of the worker’s ability. Firms are affected both by an aggregate productivity

shock, which follows a diffusion process, and by idiosyncratic cost shocks, which arrive at a Poisson

rate independently of other variables. Sufficiently adverse cost shocks can lead firms to cease pro-

duction and lay off their workforce. Although the shocks are symmetrical across firms, they affect

firms differentially depending on the quality of their labor force. Firms that employ higher-ability

workers are more likely to withstand the adverse cost shocks without going under. Furthermore this

difference in the resilience of firms can vary with variations in productivity. The model delivers rich

dynamics in the composition of the unemployed pool and observable statistics of the labor market,

which are laid out in a number of formal propositions.

In Section 4, I provide a characterization of the way the composition of the unemployed pool

affects the firms’ hiring decisions through its affect on both the value of a vacancy and the firms’

belief about the ability of a typical job applicant. To quantify the changes in the composition of

the pool, I use a strengthening of the notion of first-order stochastic dominance called monotone

likelihood ratio property (MLRP). I show that a deterioration in the quality of the pool in the sense of

MLRP leads firms to post fewer vacancies and to demand a more positive signal of a worker’s ability

before hiring the worker. When the pool becomes more adversely selected, these two effects conspire

to depress the job-finding rates of all workers irrespective of their ability.
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In Section 5, I characterize the response of the composition of the pool to changes in the aggregate

productivity. A decline in productivity can lead to a deterioration or an improvement of the pool

in the sense of MLRP depending on auxiliary functional-form assumptions on the fundamentals

of the economy. Sufficient conditions for a compositional deterioration of the pool with a decline

in a productivity are, first, that the signals of ability observed by the firms are not too precise, and

second, that a worker’s separation rate is log-supermodular in productivity and the worker’s ability. I

argue in Section 7 of the paper that the latter assumption is indeed satisfied under the most natural

specifications of the wage rate: both a fully rigid real wage rate and a wage that is affine in the worker’s

output result in a log-supermodular separation rate. Therefore in the most plausible specifications

of the model the composition of the unemployed pool is procyclical when measured in the sense of

MLRP.

These results rationalize a number of well-documented empirical facts. The model provides an

explanation for upskilling—the increase in recessions in job requirements—as arising from cyclical

variations in the composition of the pool. The compositional deterioration in recessions leads firms

to demand more unequivocally positive signals from job applicants. The model also generates a

shifting out of the Beveridge curve in recessions. The increase in hiring requirements in recessions

leads to lower job-filling rates relative to what would prevail in an economy with an acyclical compo-

sition of the pool and the same unemployment rate as the model economy, thus causing an outward

shift of the Beveridge curve. The shift in the Beveridge curve in the aftermath of the Great Recession

is evident in Figure 1.
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FIGURE 1. The US Beveridge curve: December 2007–November 2015
Source: Bureau of Labor Statistics.

The model can also explain the consequences of job loss for individual workers. In Section 6,
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I extend the model by assuming that firms can observe their job applicants’ time of entry into un-

employment. This extension of the model generates unemployment scarring through the following

mechanism. Higher-ability workers have higher hazard rates of exit from unemployment. Therefore

the distribution of ability in a cohort of workers who have entered unemployment at the same time

declines over time in the sense of MLRP. Knowing about this compositional deterioration over time,

firms impose more stringent hiring requirements on the workers who have experienced longer un-

employment spells, thus depressing their job-finding prospects. This mechanism is reminiscent of

the one used in the statistical discrimination literature à la Coate and Loury (1993) and Rosén (1997);

it provides an explanation for unemployment scarring that is complementary to the hypothesis of

human capital loss. The model can also be seen as providing a microfoundation for the assumption

of ranking of workers by firms based on unemployment duration that was proposed by Blanchard

and Diamond (1994).

In Section 6, I use the model to conduct comparative statics analyses of scarring. I show that scar-

ring is more severe for lower-ability workers and for workers who are separated in recessions. Lower-

ability workers are more likely to generate signals that barely meet the firms’ hiring requirements,

so the increase in requirements with unemployment duration afflicts them more. Scarring is also

more severe in downturns, given the assumption that a worker’s separation rate is log-supermodular

in productivity and the worker’s ability. Under this condition, the distribution of ability in cohorts

that become unemployed in recessions is lower in the sense of MLRP. Therefore, firms impose more

requirements on job candidates that have entered unemployment in downturns.

In Section 8, I discuss how the predictions of the model stack up against empirical evidence and

discuss two additional extensions of the model. Mueller (2015) finds that recessions lead to improve-

ments in the composition of ability in both the unemployed and employed populations, pointing to

an increase in sorting in recessions. I show that, once the firing of workers is taken into account, my

model can generate an increase in recessions in the average unemployed worker’s ability—consistent

with Mueller’s finding—and a deterioration in the ability in the sense that is relevant for the firms’

hiring decisions.

I also show that the predictions of the model are broadly consistent with stylized facts on the

cyclicality of quits, layoffs, and separations. The layoff rate and layoff-separation ratio are both

countercyclical in the model, in agreement with the findings of Davis and Haltiwanger (1990, 1992)

and Blanchard and Diamond (1990). Quits are acyclical in the model by construction, whereas they

are procyclical in data. However, as I argue in subsection 8.3, the model can easily be extended to

accommodate procyclical quits without affecting any of its other predictions. The modified model

can also generate acyclical average separation rates in concordance with the new view of the labor

market championed by Hall (2005b) and Shimer (2005). This extension illustrates that the cyclicality

of the separation rate plays no role in the mechanism introduced in this paper. What is important is
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rather the cyclicality of the slope of the separation rate with respect to ability.

Related literature. In addition to the studies mentioned above, the paper connects and con-

tributes to several strands of research in labor economics and macroeconomics. The paper belongs

to the general class of models that view recessions as times of reorganization. Important contribu-

tions to this literature include the works of Hall (1991), Caballero and Hammour (1994, 1996), Koen-

ders and Rogerson (2005), Philippon (2006), Pries (2008), Jaimovich and Siu (2012), Berger (2015),

Jackson and Tebaldi (2015), and Restrepo (2015). The great majority of these contributions are in the

context of models with ex ante identical workers in which the composition of the unemployed pool is

invariant throughout the course of a cycle; notable exceptions are Jaimovich and Siu (2012), Restrepo

(2015), and Pries (2008). In Jaimovich and Siu (2012) and Restrepo (2015) workers with different

skills enter unemployment differentially due to an interaction of structural and cyclical factors—

secular technological progress renders low-skilled jobs obsolete and this process is accelerated in

recessions. In my model, in contrast, compositional changes are purely due to cyclical variations in

labor productivity.

Perhaps most closely related to this paper is the work by Pries (2008). He considers an extension

of the standard search and matching model with low-productivity and high-productivity workers.

His paper however is different from the current study along two important dimensions. First, in Pries

(2008) firms simply post a vacancy and hire any and all workers who apply, whereas in my model

firms additionally observe a signal of the worker’s ability and decide whether to hire the applicant.

This feature of the model is crucial for several of its predictions. Cyclical variations in the threshold

used by the firms in their hiring decisions enables the model to explain phenomena such as up-

skilling, a procyclical recruiting intensity, movements of the Beveridge curve, and unemployment

scarring. Second, while Pries’s exercise is quantitative, the conclusions of the current paper are all

analytical. The use of analytical tools enables me to discuss the countervailing economic forces that

are in play and to establish general principles that underpin the mechanism of this paper. Using

analytical techniques also allows me to uncover insights that are absent in a stylized model with two

types. For instance, as mentioned before, in my model you can have a simultaneous increase in the

average ability in the pool and a deterioration of the ability in the sense that is relevant to the firms’

hiring decisions. This is not possible in a model with two types.

This paper also contributes to the literature that studies the consequences of job loss and unem-

ployment. In a seminal contribution, Jacobson, LaLonde, and Sullivan (1993) show that job loss leads

to a persistent decline in future earnings. This finding has been replicated more recently in a number

of papers, among them contributions by Sullivan and von Wachter (2009) and Davis and von Wachter

(2011). The consequences of job loss are not limited to earning losses. Kroft, Lange, and Notowidigdo

(2013) and Jarosch (2014) find that unemployment also leads to a decline in future employment. The
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loss in earnings and employment resulting from unemployment is termed unemployment scarring.

My model provides an explanation of scarring as arising from statistical discrimination by the firms.

Jarosch and Pilossoph (2015) also propose a model that generates unemployment scarring due to

statistical discrimination. But in contrast to this paper, they do not explicitly model the cyclical

variations in the composition of the unemployed pool. A closely related literature studies the effects

of entry into unemployment in recessions. Consistent with the prediction of this paper, Davis, Faber-

man, and Haltiwanger (2012) find that in the U.S. labor market job loss in recessions is associated

with more severe scarring than job less in expansions. Kahn (2010) and Oreopoulos, von Wachter,

and Heisz (2012) find a similar negative effect on workers of entering the labor force in a recession.

This paper also belongs to a body of work on asymmetric information in the labor market that

goes back to Greenwald (1986), Lockwood (1991), and Gibbons and Katz (1991) and includes impor-

tant contributions by Acemoglu and Pischke (1998), Guerrieri (2007, 2008), Nakamura (2008), Moen

and Rosén (2011), Kahn (2013), and Kahn and Lange (2014). But to the best of my knowledge, this

is the first paper in this literature that uses an equilibrium search model to study the dynamics of

adverse selection in the labor market. Finally, the model studied in this paper belongs to the class of

search and matching models with heterogeneous workers such as the models proposed in a number

of important contributions by Acemoglu (1996, 1999, 2001). But the current paper focuses on a

very different set of questions than those studied by Acemoglu. He studies the effects of directed

technological change and changes in the supply of skills on the long-run composition of jobs in the

economy, whereas this paper is concerned with business cycle fluctuations in the compositions of

the unemployment pool.

2 Model

I consider a labor search model in continuous time. The economy is populated by a unit measure

of workers and a large measure of firms. Workers and firms are both risk-neutral and discount the

future at rate ρ.

Workers are heterogeneous in their effective labor endowment, or ability, y. Ability is distributed

in the population according to p.d.f. g supported on an interval of positive reals Y =
[
y, y
]
. Workers

of ability y supply y units of labor inelastically.

There is a single final good, which can be used for consumption and investment. Production

takes place inside single-worker firms using labor and capital. A worker needs to work on exactly one

machine in order to be productive. Machines cost k units of the final good each. A worker of ability y

working on a machine produces output at rate yA. The labor productivity, A, is common to all firms

and follows a geometric Brownian motion with drift µA, volatility
√

2µA, and reflecting barriers at
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some arbitrary A and A.1 I assume that ρ > µ to ensure that the expected present discounted value

of A would remain finite absent the reflecting barriers.

The economy is subject to matching frictions. Let u(y) denote the unemployment rate among

workers of ability y. When fraction Eu of workers are unemployed and there are v vacancies in

the economy, matches are created at rate M(Eu, v).2 The matching function, M , is continuously

differentiable, strictly increasing in both arguments, satisfies the Inada conditions, and exhibits con-

stant returns to scale. Given the assumptions on the matching function, each vacancy is contacted

by unemployed workers at rate q(θ) = M
(
θ−1, 1

)
and each worker encounters vacancies at rate

p(θ) = M(1, θ) = m(1/q(θ)), where θ = v/Eu denotes the labor market tightness and m is a strictly

increasing function.

Firms have imperfect information about the ability of individual workers when they make hiring

decisions. When a worker is matched to a firm the firm observes a noisy signal, ω ∈ R, of the

worker’s ability, y, and decides whether to hire the worker. Workers who are not hired return to the

unemployed pool. I assume thatω is i.i.d. conditional on the ability and is drawn from a differentiable

p.d.f. `(ω|y), which satisfies the strict monotone likelihood ratio property (MLRP)—so higher signals

are better news about the worker’s ability.3 Firms learn the abilities of their employees immediately

after hiring them. The asymmetric information between past and future employers of a worker about

his ability is the key ingredient of the model that enables it to explain the phenomena discussed in

the introduction.

Matches are destroyed due to quits and layoffs.4 Workers have to quit their jobs if they are hit

by a shock that arrives at Poisson rate ς .5 They may also be laid off when the firms that hire them

experience an adverse idiosyncratic shock. I model this firm-specific shock as a machine breakdown

that occurs at Poisson rate δ independently of other random variables. Once a firm experiences a

1The relationship between the drift and the volatility of the geometric Brownian motion guarantees that A
has no time trend.

2Note that the unemployment rate in this economy is equal to Eu, the expected value of u : Y → [0, 1] with
respect to g, where E denotes the expectation operator corresponding to p.d.f. g.

3Likelihood function `(ω|y) satisfies the strict monotone likelihood ratio property if `(ω|y)
`(ω|y′) >

`(ω′|y)
`(ω′|y′) for all

ω > ω′ and y > y′.
4I make the following distinction between layoffs and firings. A layoff represents an attempt by a firm to

reduce employment due to reasons that are not directly attributable to the laid off worker’s performance; layoffs
are accompanied by job destruction in my model. Firing of a worker, on the other hand, is a direct response
to the worker’s poor performance and so is not accompanied by job destruction: the job previously occupied
by a fired worker turns into a vacancy following the firing of the worker. Throughout the majority of the paper,
I assume that firms face a firing cost that is sufficiently high to deter firing. In subsection 8.1, I consider an
extension of the model wherein firing arises in equilibrium due to a moral hazard problem on the workers’
side.

5The quits in my model are better thought of as due to reasons, such as irresolvable workplace conflict or
the need to accompany a spouse to a new location, which are largely independent of the wage and the state of
the economy. What I exclude is quitting a low-paying job to search for a job higher on the job ladder—there is
no job ladder in this economy since a worker receives the same wage regardless of where he is employed. The
main qualitative predictions of the model would however be little changed by incorporating job heterogeneity
and on-the-job search.

6



machine breakdown, it can either repair the machine or cease production and lay off its employee.

The scrap value of a broken machine is zero; the cost of repairing the machine is a random variable

c, which is distributed according to a differentiable p.d.f. h independent of other variables.6

Wages are determined by a wage rule as in Hall (2005a). The wage rate for a worker of ability

y when the labor productivity is A is given by a twice continuously differentiable function w(y,A).

The wage could depend on ability and the labor productivity, but it cannot be a function of the

composition of ability in the pool of the unemployed.7 This assumption significantly simplifies the

analysis by making the job creation and layoff decisions of firms independent of how they expect the

composition of ability in the unemployed pool to evolve over time. I assume that both the wage rate

w(y,A) and a firm’s flow profit π(y,A) = yA− w(y,A) are positive and strictly increasing in y and A.

3 Equilibrium

In this section I derive the equations that describe the equilibrium of the model. I first characterize

the separation rate and the job-finding rate—the ins and outs of unemployment—as functions of

ability, labor productivity, and the composition of the pool of unemployed. The dynamics of the

economy are then described by a dynamical system in which the state space is the unemployment

rates for workers of every ability and the rate of change in the unemployment rate among workers of

ability y is given by their net flow into unemployment.

I start by characterizing the value of vacancies. Let V (λ,A) denote the expected net present value

of a vacancy when the distribution of ability in the pool of the unemployed is given by λ and labor

productivity is given byA. Free entry and exit of firms pins down the value of vacancies: any inactive

firm can create a vacancy by purchasing a machine that costs k units of the final good and any firm

with no worker and a machine can sell the machine for k units of the final good. Therefore, whenever

some hiring is taking place in the economy, V (λ,A) must be identically equal to k. I assume that the

parameters of the model are such that this is always the case.8

6One special case of the model is one in which the cost of repair is concentrated on a large number c. Given
such a specification, machines would almost never be repaired. The model would then be isomorphic to a
model with stochastic depreciation of capital at rate δ. Another special case is one in which the cost of repair
is concentrated on a small number c. Then firms would almost always repair a broken machine and the model
would be equivalent to a model with a flow maintenance cost equal to δc.

7A particular case of my wage rule is the fully rigid real wage proposed by Hall (2005a) and Shimer (2005,
2012b). Hall and Milgrom (2008), Gertler and Trigari (2009), and Kennan (2010) provide microfoundations for
rigid real wages. However, see Pissarides (2009) for an argument against the use of rigid wages in search models.

8A sufficient condition for there to always be some hiring is that (π(y,A) + ςk)/(ρ + ς + δ) is larger than
k. Under this condition a job employing a worker of the highest ability, y, is at all times more valuable to a
firm than, k, the cost of a machine. This observation together with the Inada conditions and the presence of
quits imply that there is always some hiring. To see why, suppose to the contrary that no firm is hiring at some
point in time. This would imply that the market tightness is equal to zero, so given that the matching function
satisfies the Inada conditions, if a firm were to post a vacancy, it would be contacted by workers infinitely fast.
But due to quits there are some workers of ability y in the pool of the unemployed. Therefore by being extremely
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I next characterize the present value of profits of a firm that has already hired a worker of ability

y > 0. The flow profit of the firm is given by π(y,A) = yA−w(y,A). Denote the expected present dis-

counted value of the firm’s profits by Π(y,A). The value of profits is affected by machine breakdowns

and separations due to quits and layoffs. The firm lays off its employee and ceases production in the

event of a machine breakdown if and only if the cost of repair, c, is larger than the present value of the

firm’s profits, Π(y,A). Taking layoffs and quits into consideration, the value function needs to satisfy

the following Hamilton-Jacobi-Bellman (HJB) equation:

ρΠ(y,A) = π(y,A) + µA
∂Π(y,A)

∂A
+ µA2∂

2Π(y,A)

∂A2
+ ς(k −Π(y,A))− δEc̃ min {c̃,Π(y,A)} , (1)

where I have used the fact that V (λ,A) ≡ k to substitute k for the value of a vacancy. The first three

terms on the right-hand side of equation (1) are standard terms that arise from an application of Itô’s

lemma. The fourth term represents the capital gain (or less) the firm experiences when its employee

quits his job. The last term represents the capital loss from a machine breakdown: the firm incurs

a cost of c if it decides to repair the machine and loses the entire value of the firm, Π(y,A), if it

decides against a repair. The value of the firm needs to additionally satisfy the following boundary

conditions:9

∂Π(y,A)

∂A

∣∣∣
A=A

=
∂Π(y,A)

∂A

∣∣∣
A=A

= 0. (2)

The assumption that π(y,A) is continuous and strictly increasing in y and A ensures that Π(y,A) is

also continuous and strictly increasing in y and A over Y ×
(
A,A

)
.

The separation rate is given by the sum of quits and layoffs. The quit rate is fixed at ς. The layoff

rate for a worker of ability y when the labor productivity is A is given by δ(1 −H(Π(y,A))), where H

denotes the c.d.f. corresponding to h. Thus the total separation rate for workers of ability y is given

by

s(y,A) = ς + δ (1−H(Π(y,A))) . (3)

The separation rate, s(y,A), is strictly decreasing in y and A since Π(y,A) is strictly increasing in its

arguments.

I next characterize the hiring policy of a firm with a functioning machine that is matched to a

worker of unknown ability. The firm observes an imperfect signal, ω, of the worker’s ability, y, that

is distributed according to p.d.f. `(ω|y). By Bayes’ rule, the present value of the profits the firm is

expected to obtain by hiring the worker is given by

J(ω, u,A) =

∫
Π(ỹ, A)`(ω|ỹ)u(ỹ)dỹ∫

`(ω|ỹ)u(ỹ)dỹ

, (4)

selective an entrant firm can meet and hire a worker of ability y immediately after investing k in the purchase
of a machine. Therefore vacancy posting is a strictly profitable deviation.

9See for instance Dixit (1993).
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where u = {u(y)}y∈Y denotes the profile of unemployment rates across different abilities. The

distribution of ability in the pool of the unemployed affects the firm’s prior and posterior beliefs

about the ability of the worker: when unemployed workers are expected to have lower abilities on

average, the firm interprets good signals more pessimistically.

The expected value of hiring a worker only depends on the composition of the unemployed

pool and not on the unemployment rate. This can be seen by examining equation (4): a doubling

of the unemployment rate across all abilities results in a doubling of both the numerator and the

denominator of the expression on the right-hand side but leaves the expression on the left-hand side

unchanged. The reason for this invariance is that proportional changes in the number of unem-

ployed workers across all levels of ability have no effect on the likelihood that a randomly selected

worker is of a given ability. I use this observation to normalize u to a probability distribution λ (that

integrates to one) and express J as a function of λ. More formally, define

λ(y) =
u(y)g(y)

Eu
=

u(y)g(y)∫
u(ỹ)g(ỹ)dỹ

. (5)

Then J(ω, λ,A) = J(ω, u,A).

The firm hires the matched worker whenever doing so is expected to generate profits valued in

excess of the resale value of the machine owned by the firm. An operational machine can always be

sold for k units of the final good. So the firm hires the worker if and only if it observes a signal ω about

the ability of the worker that satisfies J(ω, λ,A) ≥ k. Given that `(ω|y) satisfies the strict MLRP and Π

is a strictly increasing function of ability, J(ω, λ,A) is strictly increasing in ω for any nondegenerate

distribution of ability.10 So for all λ and A there exits a unique threshold ω(λ,A) satisfying

J(ω(λ,A), λ, A) = k (6)

such that firms hire the matched workers if they generate a signal larger than ω(λ,A).11 I denote

the probability that a worker of ability y generates a signal larger than ω(λ,A) by P (y, λ,A) = 1 −
L(ω(λ,A)|y), where L(·|y) is the c.d.f. of ω conditional on y.

I next study the vacancy-creation decisions of firms. Since V (λ,A) is independent ofA and λ, the

value of a vacancy satisfies the following simple HJB equation:

ρV (λ,A) = q(θ(λ,A))

∫
(Π(ỹ, A)− V (λ,A))P (ỹ, λ, A)λ(ỹ)dỹ,

where the equation is used to define the market tightness as a function only of λ and A. With some

abuse of notation let q(λ,A) = q(θ(λ,A)). The above equation can be rewritten in a more convenient

form in terms of q(λ,A):

1

q(λ,A)
=

1

ρk

∫
(Π(ỹ, A)− k)P (ỹ, λ, A)λ(ỹ)dỹ. (7)

10For a proof, see, for example, Milgrom (1981).
11I set ω(λ,A) = −∞ if limω→−∞ J(ω, λ,A) > k and set ω(λ,A) =∞ if limω→∞ J(ω, λ,A) < k.
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The rate at which unemployed workers encounter vacancies is given by

p(λ,A) = m

(
1

ρk

∫
(Π(ỹ, A)− k)P (ỹ, λ, A)λ(ỹ)dỹ

)
. (8)

The job-finding rate for a worker of ability y is the product of the rate at which the worker encoun-

ters a firm and the probability that he clears the firm’s hiring threshold by generating a signal larger

than ω. The former is given by p(λ,A) while the latter is given by P (y, λ,A). Thus the job-finding rate

for a worker of ability y when the distribution of ability in the unemployed pool is λ and the labor

productivity is A is given by

f(y, λ,A) = p(λ,A)P (y, λ,A). (9)

The distribution of ability in the unemployed pool affects both terms that appear in the job-

finding rate. The number of vacancies firms create and so the rate of contact between firms and

workers is a function of the quality of the pool they face. This is how λ affects p. Additionally the

firms’ hiring threshold is a function of their prior belief about the quality of a typical matched worker:

when firms expect lower-ability workers, more unequivocally good signals are needed to convince

them otherwise. This is the channel through which λ affects P and so the job-finding rate.

Once the separation and job-finding rates are determined, the dynamics of the model are easy

to describe. The unemployment rate among workers of ability y evolves according to the following

differential equation:
d

dt
ut(y) = s(y,At)(1− ut(y))− f(y, λt, At)ut(y), (10)

where At, ut, and λt denote the values of A, u, and λ at time t. The definition of equilibrium is

straightforward.

Definition 1. Given a path {At}t≥0 for the labor productivity and an initial condition {u0(y)}y∈Y , an

equilibrium is a path for the unemployment rate {ut(y)}y∈Y,t>0 that satisfies equation (10) at all times

and functions Π, s, J , ω, q, p, and f that solve the functional equations (1)–(9).

I have defined equilibrium as a set of deterministic objects that do not directly refer to the un-

derlying stochastic process for labor productivity that drives the model economy. The stochasticity

is however incorporated in my definition of equilibrium in two ways. First, functions Π, s, J , ω,

q, p, and f are the solutions to a set of functional equations that are derived by making use of the

properties of the Brownian motion that describes the evolution of A. Second, the equilibrium path

of the unemployment rate, {ut(y)}y∈Y,t>0, depends on the realized path of labor productivity, {At}t≥0,

by way of equation (10). This dependence defines a mapping from the space of paths ofA to the space

of paths of {u(y)}y∈Y . I could have alternatively defined equilibrium as this mapping from paths to

paths. However such a choice would have required introducing additional notation without yielding

any additional mathematical or conceptual fruit.

10



4 Adverse Selection and Hiring

In this section I characterize the effect of changes in the composition of the pool of the unemployed

on the firms’ vacancy-posting and hiring decisions. I show that a worsening of the pool leads to

fewer vacancies and more exacting hiring requirements, forces which both contribute to a smaller

job-finding rate. But before formally presenting the results I need to define the sense in which one

pool is worse than another pool. In other words I need a (partial) order on the set of distributions of

ability, ∆Y . Throughout the rest of the paper I use the following partial order on ∆Y .

Definition 2. Let λ, λ′ be two probability distributions over Y . λ is larger in the sense of MLRP than λ′

if λ(y)/λ′(y) is an increasing function of y.

It is useful to make a note of the relationship between the MLRP and FOSD partial orders: if λ

is larger than λ′ in the sense of MLRP, it is also larger than λ′ in the sense of first-order stochastic

dominance. The converse is however not true. The following proposition is the main result of this

section; it summarizes how the observable statistics of the labor market vary as λ and A change.

Proposition 1. Let ω, θ, and f denote the equilibrium functions that determine the hiring threshold,

the market tightness, and the job-finding rate, respectively.

(a) ω(λ,A) is decreasing in λ and A.

(b) θ(λ,A) is increasing in λ and A.

(c) f(y, λ,A) is increasing in y, λ, and A.

Firms relax their hiring standards both with an increase in λ and an increase in A. The reason for

the decrease in the threshold with an increase in A is straightforward. When the labor productivity

improves, the value of a job employing a worker of any ability increases while the costs of hiring

remain unchanged. So it becomes profitable for firms to hire some of the workers whom they were

previously unwilling to hire. The fact that the signal is informative of ability then immediately implies

that firms must be willing to be more forgiving when it comes to lower signals when the economy

improves.

It is only slightly harder to see why the hiring threshold is decreasing in the distribution of ability

among the unemployed. Intermediately high signals are either generated by high-ability workers

who got unlucky or low-ability workers who got lucky. The firms’ prior belief about the ability of a

typical worker determines how these possibilities are weighted. In an adversely selected labor market

in which λ is relatively low in the sense of MLRP, firms interpret intermediate signals as being the

result of luck and not indicative of high ability. The hiring requirements thus become increasingly

insurmountable as the distribution of ability in the unemployed population deteriorates. This lowers

11



the probability of being hired conditional on being matched for workers of all abilities. An increase

in λ has the opposite effect of increasing the probability of being hired.

Firms create fewer vacancies in adversely selected labor markets or when A is low since they

anticipate imposing stringent hiring standards and being unable to fill the vacancy with a suitable

employee. This diminished incentive to post vacancies results in a slack labor market and a slow

rate of exit from unemployment for all workers. This is the key mechanism through which the model

generates slow recoveries.

5 Dynamics of Adverse Selection

Section 4 discussed the implications of shifts in the composition of the unemployed pool for the

firms’ hiring decisions and workers’ job-finding prospects, but it was silent on the economic condi-

tions that contribute to such aggregate compositional changes. In this section I show that changes

in productivity can lead to variations in the composition of the unemployed pool over the course

of a business cycle. I start by characterizing the short-term response of the distribution of ability

among unemployed workers to an increase in the labor productivity and use this characterization to

highlight the conflicting economic forces that are in play. The composition of the pool is altered by

changes along the hiring margin and the layoff margin that affect workers differentially depending on

their ability. I then introduce additional assumptions that allow me to obtain unambiguous results

about the effect of increases in labor productivity on the composition of the pool.

I build up toward the main characterization results by manipulating the law of motion of the

unemployment rate. Recall that the unemployment rate among workers of ability y evolves according

to the following differential equation:

d

dt
ut(y) = s(y,At)(1− ut(y))− f(y, λt, At)ut(y).

Equation (5) defines λ as a function of u, so with some abuse of notation, I can write f as a function

f(y, u,A) of u. The above equation then can be rewritten as

d

dt
ut(y) = Γ(y, ut, At)ut(y), (11)

where Γ(y, u,A) is defined as

Γ(y, u,A) = s(y,A)

(
1

u(y)
− 1

)
− f(y, u,A). (12)

Γ(y, u,A) represent the net flow rate into unemployment for workers of ability y when the state of the

economy is described by u and A. Integrating equation (11) with respect to g(y) I get

d

dt
Eut =

[∫
Γ(ỹ, ut, At)λt(ỹ)dỹ

]
Eut. (13)
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Combining with equation (11),

d

dt
λt(y) =

[
Γ(y, ut, At)−

∫
Γ(ỹ, ut, At)λt(ỹ)dỹ

]
λt(y). (14)

Let Λt(y) denote the complementary c.d.f. corresponding to probability measure λt(y).12 Integrating

equation (14) with respect to y I get

d

dt
Λt(y) =

∫
y
λt(ỹ)Γ(ỹ, ut, At)dỹ −

(∫
y
λt(ỹ)dỹ

)(∫
Γ(ỹ, ut, At)λt(ỹ)dỹ

)
.

Let Eλt denote the expectation operator corresponding to probability measure λt. The above equa-

tion can be rewritten in terms of Eλt as

d

dt
Λt(y) =

[
Eλt [Γ(ỹ, ut, At)|ỹ ≥ y]− Eλt [Γ(ỹ, ut, At)]

]
Λt(y). (15)

An increase in Λ(y) for all y corresponds to an increase in the ability of unemployed workers in the

sense of first-order stochastic dominance. Therefore if the right hand side of equation (15) is positive

for all y at time t, then λt(y) is increasing at time t in the sense of first-order stochastic dominance. A

sufficient condition for this to be the case is that Γ(y, ut, At) is increasing in y. One can in fact prove

the following stronger result.

Proposition 2. Consider an equilibrium {ut}t≥0 corresponding to some path of labor productivity

{At}t≥0. If Γ(y, ut, At) is increasing in y at time t, then the distribution of ability in the unemployed

pool improves in the sense of MLRP between t and t+ δt for sufficiently small δt.

The proposition is true almost by definition. Γ(y, u,A) is defined as the rate of change in the

unemployment rate of workers of ability y when the state of the economy is given by u and A. If

Γ(y, ut, At) is increasing in y, higher-ability workers experience a larger proportional increase in their

unemployment rate at time t relative to lower-ability workers. Therefore the unemployed pool im-

proves in the sense of MLRP.

Although mathematically trivial, Proposition 2 is useful in characterizing the response of the

economy to shocks to the labor productivity. Consider an economy in which the initial profile of

unemployment rate is {u0(y)}y∈Y and the path of labor productivity is given by {At}t≥0. Now suppose

that the path of labor productivity is perturbed to {A′t}t≥0, whereA′t = At+δAt for some small positive

{δAt}t≥0. This increase in labor productivity can induce an improvement or a deterioration in the

quality of the unemployed pool depending on the shape of the Γ function. The next proposition

delineates this dependence.

Proposition 3. Suppose that ∂2yAΓ(y, u0, A0) is positive (negative) for all y. A small increase in labor

productivity at time zero from A0 to A′0 results in an improvement (decline) in the quality of the pool

of the unemployed in the sense of MLRP at time δt for δt sufficiently small.

12That is, Λt(y) =
∫
y
λt(ỹ)dỹ.
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The result is intuitive in light of Proposition 2. If ∂2yAΓ(y, u0, A0) is positive for all y, an increase

in A results in an increase in the slope of Γ(y, u0, A0) with respect y. But Proposition 2 implies that

a more positively sloped Γ(y, u0, A0) is associated with a better unemployed pool at time δt. Thus a

higherA leads to an improved pool when y andA appear as complements in the net rate of flow into

unemployment, Γ(y, u,A). A formal proof is provided in the appendix.

To get a sense of various forces that contribute to changes in the composition of the unemployed

pool when A is changed, it is informative to look at the terms that comprise ∂2yAΓ(y, u,A):

∂2Γ(y, u,A)

∂y∂A
= − ∂s(y,A)

∂A

u′(y)

u2(y)
+
∂2s(y,A)

∂A∂y

(
1

u(y)
− 1

)
+
∂p(λ,A)

∂A

L(ω(λ,A)|y)

∂y
+ p(λ,A)

∂`(ω(λ,A)|y)

∂y

∂ω(λ,A)

∂A
(16)

The first two terms represent the differential impact of an increase in the labor productivity on the

flow of workers of different abilities into unemployment. The first term captures the differential

exposure of workers of different abilities to a uniform change in the separation rate that arises from

differences in their respective employment rates: the decrease in the separation rate lowers the

flow into unemployment relatively more for workers of ability y for whom the employment rate,

1−u(y), is relatively larger. This term is positive (negative) when the unemployment rate is increasing

(decreasing) in ability.

The second term is the differential change in the separation rate across abilities from an increase

in A. It is positive (negative) if the separation rate is supermodular (submodular).13 If s is super-

modular, when A declines firms with lower-ability workers lay off their employees at a higher rate

compared to firms with higher-ability workers.

The third and fourth terms represent the differential change in the flow of workers of different

abilities out of unemployment when the labor productivity increases. The former is the effect of the

improvement in the state of the economy on the firms’ incentives to post vacancies and the resulting

tightening of the labor market and the differential effect of a tighter labor market on workers of

different abilities. The increase in vacancies is more beneficial for higher-ability workers who are

more likely to generate sufficiently good signals that allow them to be hired. This term is always

negative since p(λ,A) is increasing in A by Proposition 1 and `(ω|y) satisfies the strict MLRP.

The last term captures the differential effect of a loosening of the hiring standards that follows an

increase inA across workers with different abilities. This term is more positive (negative) for workers

who were more likely to generate signals just below (above) the hiring threshold prior to the increase

in A. It is always positive for some workers and negative for others.

13A function s(y,A) is supermodular if s(max{y, y′},max{A,A′}) + s(min{y, y′},min{A,A′}) ≥ s(y,A) +
s(y′, A′) for all y, y′, A, and A′. The function is strictly supermodular if the above inequality is strict whenever
y > y′ and A < A′. For a twice continuously differentiable function s(y,A), supermodularity is equivalent
to ∂2s(y,A)/∂y∂A ≥ 0 and strict supermodularity is equivalent to ∂2s(y,A)/∂y∂A > 0. A function s(y,A) is
submodular (strictly submodular) if−s(y,A) is supermodular (strictly supermodular).
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The effect of an increase in the labor productivity on the distribution of ability in the unemployed

pool is therefore in general ambiguous. However there are particular cases in which unambiguous

results can be obtained. In the rest of this section I focus on one such case in which the signals that

firms observe are noisy and the economy is close to a steady state as defined next.

Definition 3. A steady state equilibrium corresponding to labor productivity A∗ is an equilibrium in

which At = A∗ and ut = u∗ at all times.

Steady state equilibrium is a useful definition both conceptually and mathematically. It describes

a zero-probability event in which the realized path of labor productivity is forever constant at some

A∗.14 Despite being a zero probability event, a steady state equilibrium is a good approximation to

the behavior of the economy over short horizons if the drift and volatility of the labor productivity

are sufficiently small.15 More importantly for the purpose of this section, it proves to be a useful

benchmark for the initial state of the economy starting from which one can obtain unambiguous

results about the effect of changes in A on λ.

Equation (16) can be simplified when the economy is at a steady state. When u∗ andA∗ constitute

a steady state equilibrium, they satisfy the following relation:16

1

u∗(y)
− 1 =

f(y, u∗, A∗)

s(y,A∗)
. (17)

Substituting for u∗ from the above equality in equation (16) and some simple algebra imply that in a

steady state,

∂2Γ(y, u∗, A∗)

∂y∂A
= f(y, u∗, A∗)

∂ log s(y,A∗)

∂y∂A
+

(
∂p(λ∗, A∗)

∂A
− p(y, λ∗)

s(y,A∗)

∂s(y,A∗)

∂A

)
∂L(ω(λ∗, A∗)|y)

∂y

+ p(λ∗, A∗)
∂`(ω(λ∗, A∗)|y)

∂y

∂ω(λ∗, A∗)

∂A
. (18)

The first term is positive if s is strictly log-supermodular and negative if it is strictly log-submodular,

the second term is always negative, and the last term takes on both positive and negative values.17

Therefore the net effect of an increase in A on λ is still ambiguous. But as I show in the next proposi-

tion, the first term is dominant if the signals observed by the firms are sufficiently noisy in the sense

that is made precise next.

14Keep in mind however that even in a steady state equilibrium firms base their hiring and layoff decisions
on the correct assumption that the labor productivity follows a geometric Brownian motion with positive drift
and volatility.

15One can in fact show ifA0 = A∗ and u0 = u∗, then µ can be chosen sufficiently small to guarantee that ut is
arbitrarily close to u∗ for an arbitrarily long period of time and with a probability arbitrarily close to 1.

16Note that the steady state unemployment rate is decreasing in ability since the separation rate is decreasing
in ability and the job-finding rate is increasing in ability.

17A function s(y,A) is log-supermodular (strictly log-supermodular) if log s(y,A) is supermodular (strictly
supermodular). A function s(y,A) is log-submodular (strictly log-submodular) if log s(y,A) is submodular
(strictly submodular). Also see footnote 5.
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Definition 4. The signal structure `σ is additive with precision σ−1 if ω = y+ σε, where ε is a random

variable supported on the entire reals and distributed according to c.d.f. Φ with a differentiable and

bounded density that is symmetric around zero.

The conditions imposed on Φ ensure that endogenous variables change continuously with changes

in σ. They are satisfied by most symmetric distributions including the normal distribution. The next

proposition shows that the first term in equation (18) is dominant whenever σ is sufficiently large.

Proposition 4. Fix the labor productivity A∗ and all the fundamentals of the economy except for the

signal structure and assume that
∫

Π(ỹ, A∗)g(ỹ)dỹ > k. Consider a class of additive signal structures

{`σ} that are parameterized by σ. If s is strictly log-supermodular (log-submodular), then there exists

some σ∗ < ∞ such that, in any economy with signal structure `σ with σ > σ∗, starting from the

steady state equilibrium corresponding to A∗, a small increase in A at time zero results in an increase

(decrease) in the sense of MLRP in the quality of the pool of the unemployed at time δt.

The intuition for the proposition is as follows. The assumption that
∫

Π(ỹ, A∗)g(ỹ)dỹ−k is positive

guarantees that firms are willing to hire a worker who is drawn from a pool that is representative of

the population at large. Therefore, given that the signals are not very informative, firms use a low

hiring threshold and do not vary the threshold by much when the labor productivity changes. So

changes in A mainly affect the composition of the pool through one margin—the separation rates of

low and high-ability workers respond asymmetrically to changes in the labor productivity. If s is log-

supermodular, an increase in A lowers the separation rates of lower-ability workers more compared

to those of higher-ability workers thus causing an improvement in the quality of the pool of the

unemployed. In Section 7 I present conditions on the fundamentals of the economy that give rise

to log-supermodular and log-submodular separation rates.

6 Scarring

In this section, I extend the model introduced in Section 2 by assuming that firms can observe the

time of each worker’s latest entry into unemployment and show that the model can generate un-

employment scarring—diminished employment prospects of workers who experience a long un-

employment spell. In the extended model firms rationally expect the population of workers who

have experienced longer unemployment spells to be more adversely selected. They therefore subject

such workers to more stringent hiring standards. This statistical discrimination by firms gives rise

to lower job-finding rates for the long-term unemployed. In subsection 6.2 I show that scarring

can also result from job loss in a recession. I use the model to argue that, if the separation rate

is log-supermodular, workers who become unemployed during recessions have worse job-finding

prospects than otherwise identical workers who become unemployed during booms, even control-

ling for labor productivity and market tightness after separation.
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6.1 Unemployment scarring

Consider a cohort of unemployed workers who have all entered unemployment at time τ . I let λτt

denote the distribution of ability in the cohort and let θt denote the market tightness at time t.18 The

hiring threshold used by the firms when they are matched with a worker from this cohort is given

by ω(λτt , At).19 A worker of ability y who has become unemployed at time τ generates a signal that

exceeds the hiring threshold at time t with probability P (y, λτt , At) = 1 − L(ω(λτt , At)|y) and exits

unemployment at rate f(y, λτt , At, θt) = p(θt)P (y, λτt , At). The following result is a corollary of the fact

that p(θ) and P (y, λ,A) are positive and increasing functions.

Proposition 5. Let f(y, λτt , At, θt) denote the time t job-finding rate for an unemployed worker of ability

y who has entered unemployment at time τ . f(y, λτt , At, θt) is increasing in ability, y, the distribution

of ability in the worker’s cohort, λτt , labor productivity, At, and labor-market tightness, θt.

Proposition 5 is the extended-model counterpart of part (c) of Proposition 1, but there is a note-

worthy difference between the two. In the baseline model the distribution of ability in the pool of the

unemployed and labor productivity uniquely determine the market tightness through the free-entry

condition, whereas in the current model λτt and θt need not satisfy any joint restriction whatsoever.

This is due to the fact that λτt is the distribution of ability in only one of a continuum of cohorts that

make up the pool while θt is determined by the distribution of ability in the entire pool. Therefore λτt

and θt can independently affect the job-finding rate, f(y, λτt , At, θt). The proposition shows that an

increase in either variable leads to an increase in the job-finding rate.

I next characterize the evolution of the job-finding rate for a worker who has become unemployed

at time τ . The worker’s job-finding rate can vary over time both due to changes in At and θt and

due to time variations in λτt that result from differential exit rates of different workers in the cohort.

As illustrated by Proposition 5, changes in At and θt affect the job-finding rate in a straightforward

manner. Here I abstract away from such changes by assuming that At and θt are constant after time

τ . This simplification enables me to focus on the decline in the job-finding rate that results from

changes in the cohort composition. The rate of change in the worker’s job-finding rate along a path

with constant productivity and market tightness is given by the following expression:

d

dt
log f(y, λτt , At, θt)

∣∣∣∣
At=Aτ ,θt=θτ ∀t≥τ

=
−`(ω(λτt , Aτ )|y)

1− L(ω(λτt , Aτ )|y)

〈
∂

∂λ
ω(λτt , Aτ ),

d

dt
λτt

〉
, (19)

where dω(λ,A)/dλ denotes the derivative of ω with respect to λ and 〈 , 〉 denotes the inner product.20

18θt is an endogenous process as in the baseline model, but this fact is immaterial for the analyses of this
section for the following reason. I study a single cohort of workers who have all entered unemployment at
some time τ , and any such cohort has zero measure given that the model is in continuous time.

19ω is the function defined in equation (6).
20More formally, ∂ω(λ,A)/∂λ is the Fréchet derivative of ω with respect to λ, and 〈ϕ, ν〉 =

∫
ϕ(y)dν(y) for any

function ϕ : Y → R and signed measure ν over Y .
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Equation (19) has an intuitive interpretation. The rate of change of the job-finding rate is the

product of two terms. The first is the sensitivity of the job-finding rate to changes in the hiring

threshold. This term depends on the worker’s ability through its effect on the hazard rate of signal

distribution. The second term is the time derivative of the hiring threshold. This term is in turn the

product of the sensitivity of the hiring threshold to the distribution of ability, and the time derivative

of the distribution of ability. By Proposition 1, ω(λ,A) is decreasing in λ. Therefore equation (19)

implies that the job-finding rate declines over time if the cohort becomes more adversely selected

over time. This is indeed the case as I argue below.

I proceed by characterizing the dynamics of λτt . Let nτt (y) denote the time t measure of unem-

ployed workers of ability y who have entered unemployment at time τ . The evolution of nτt (y) is

described by the following differential equation

d

dt
nτt (y) = −f(y, λτt , At, θt)n

τ
t (y). (20)

Let nτt =
∫
nτt (ỹ)dỹ denote the measure of unemployed workers who have entered unemployment at

time τ . Integrating equation (20) with respect to y and using the fact that λτt (y) = nτt (y)/nτt imply that

d

dt
nτt = −

[∫
f(y, λτt , At, θt)λ

τ
t (ỹ)dỹ

]
nτt . (21)

Equations (20) and (21) imply that

d

dt
λτt (y) = −

[
f(y, λτt , At, θt)−

∫
f(y, λτt , At, θt)λ

τ
t (ỹ)dỹ

]
λτt (y). (22)

Equation (22) describes the evolution of the distribution of ability in the cohort that has entered

unemployment at time τ . The share of workers in this cohort who have ability y decreases over time

if workers of ability y have a higher-than-average rate of exit from unemployment. The following

proposition is a simple corollary of equation (22) and the fact that lower-ability workers are less likely

to exit unemployment at any given time.

Proposition 6. The ability distribution of the cohort of unemployed workers who have entered unem-

ployment at time τ worsens over time in the sense of MLRP.

The intuition for this result is as follows. Higher-ability workers are more likely to generate suffi-

ciently favorable signals to get hired when they are matched with a firm. Therefore they always have

higher job-finding rates than lower-ability workers who have become unemployed at the same time.

As the higher-ability workers in a cohort leave the cohort at higher rates compared to the lower-ability

workers, the cohort becomes more adversely selected over time.

Equation (19) and Proposition 6 illustrate the mechanism through which the model generates un-

employment scarring. Consider again the cohort of workers who have all entered unemployment at

time τ . With the passage of time the distribution of ability in the cohort worsens in the sense of MLRP.
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Firms respond to the deterioration of ability in the cohort by interpreting the signals generated by its

members more pessimistically and thus increasing their hiring threshold. This in turn depresses the

job-finding prospects of any remaining workers of the cohort irrespective of their ability. The result

is a scarring of the workers who have been long-term unemployed.

Equation (19) also illustrates that the rate of decline of the job-finding rate is larger for workers

of ability y for whom the hazard rate `(ω(λτt , At)|y)/(1 − L(ω(λτt , At)|y)) is larger. Since ` satisfies the

MLRP, `(ω|y)/(1− L(ω|y)) is decreasing in y. This observation proves the following proposition.

Proposition 7. The rate of decline in the job-finding rate with unemployment duration is larger for

workers who have lower abilities.

The proposition shows that unemployment scarring afflicts lower-ability workers more severely.

Lower-ability workers are more likely to be hired by generating signals that barely pass the hiring

threshold, so the decline in the hiring threshold resulting from the deterioration in the composition

of the cohort affects them to a greater extent.

6.2 Recessions and scarring

The state of the economy at the time of separation can influence the separated worker’s job-finding

prospects as well. In this subsection I show that entering unemployment during a recession can

be a further source of scarring. If the separation rate is log-supermodular in ability and productivity,

workers who get unemployed in recessions end being part of a more adversely selected cohort. Firms

therefore will impose higher hiring thresholds on cohorts who enter unemployment in recessions

thereby diminishing the job-finding prospects of the workers in the cohort. The following proposi-

tion states the general result.

Proposition 8. Suppose that the separation rate is log-supermodular (log-submodular). All else equal,

workers who become unemployed at a time of low labor productivity experience lower (higher) job-

finding rates immediately after the start of their unemployment spell compared to workers who become

unemployed at a time of high labor productivity.

The “all else equal” quantifier is important for the interpretation of the result. To better see this

point, assume that the separation rate is log-supermodular and consider two economies: one in

which labor productivity at time τ is given by Aτ and another in which it is given by A′τ > Aτ . The

proposition states that workers in the unprimed economy who lose their jobs at time τ have lower

job-finding rates than otherwise identical workers in the primed economy who lose their jobs at

time τ—even if the labor productivity and market tightness follow identical paths after time τ in the

unprimed and primed economies. In other words workers’ job-finding rates in this model exhibit

path dependence.
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Lower-ability workers in a cohort impose a negative externality on the higher-ability workers in

the cohort. Since firms cannot perfectly observe the ability of individual workers, they use their prior

information about the distribution of ability in a worker’s cohort to make inferences about the quality

of the worker. So being part of an adversely selected cohort is associated with a lower rate of exit

from unemployment. If separation rate is log-supermodular, cohorts that enter unemployment in

downturns are more adversely selected—so their members experience lower job-finding rates. This

is how the model can generate scarring of workers who become unemployed in recessions.

7 Separation Rate

In the last two sections I argued that whether the separation rate is log-supermodular or log-submodular

determines whether the pool of the unemployed becomes more adversely selected in downturns and

whether job loss in recessions leads to scarring. In this section I find two sets of conditions on the

fundamentals of the economy that give rise to log-supermodular and log-submodular separation

rates and discuss their plausibility.

To be able to make inroads into characterizing the way labor productivity and ability determine

the separation rate, I need to make functional-form assumptions on the wage rate and the distribu-

tion of repair costs. I assume that the cost of repair is distributed according to a Pareto distribution

with shape parameter α > 0 and scale parameter c, where c is chosen sufficiently small to ensure that

firms always repair their machine if the cost of repair is c.21 Pareto distribution is chosen for the sake

of computational tractability. The result that follows can be generalized to any distribution with a

monotonically decreasing density.

I additionally assume that the wage received by a worker of ability y is given by the sum of a base

wage w0(y), which is independent of labor productivity, and a bonus β(y)A, which varies propor-

tionally with A. Another way of thinking about the wage rule is as the first-order approximation to

a more general wage rule. The particular shape of the function w(y,A) is nonetheless unimportant

for the result that follows. What turns out to be important is whether the flow profit of the firm,

π(y,A) = yA − w(y,A), is supermodular or submodular in y and A. The following proposition

delineates this point.

Proposition 9. Assume that the cost of repair is distributed according to a Pareto distribution and

the wage rate is given by w(y,A) = w0(y) + β(y)A and that Π(y,A) and its first two derivatives vary

smoothly with δ.

(a) Suppose that π(y,A) is strictly supermodular in y and A. Given any open interval A ⊂
[
A,A

]
, if

the rate of machine breakdown, δ, and the slope of the base wage, |w′0|, are sufficiently small and

21For this to be the case it is sufficient that c is smaller than (π(y,A) + ςk)/(ρ + ς + δ), a lower bound on the
value of a firm that hires a worker of the lowest ability.
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the distribution of the cost of repair has a sufficiently thin tail, then the separation rate, s(y,A), is

strictly log-supermodular in (y,A) over Y ×A.

(b) Suppose that π(y,A) is strictly submodular in y and A. Given any open interval A ⊂
[
A,A

]
, if

the rate of machine breakdown, δ, and the slope of the base wage, |w′0|, are sufficiently small and

the distribution of the cost of repair has a sufficiently thin tail, then the separation rate, s(y,A), is

strictly log-submodular in (y,A) over Y ×A.

To gain some intuition for this result, it is useful to consider a special case of the model in which

w0(y) = ςk and β(y) = β0y for some constant β0 ∈ (0, 1). Then for small values of δ the expected

present value of a firm’s profits is approximately equal to (1−β0)yA/(ρ+ ς). So a one percent increase

in labor productivity leads to a one percent increase in the value of all firms and anαpercent decrease

in the probability of layoff for all workers independently of their ability. But this α percent decrease

in layoffs represents a larger proportional decrease in total separations for lower-ability workers for

whom layoffs constitute a larger share of separations vis-à-vis quits. Therefore the decrease in total

separations resulting from the increase in A is larger in percentage terms for lower-ability workers

than their higher-ability counterparts. That is, the separation rate is log-supermodular in labor

productivity and ability. The proof amounts to formalizing this intuition for the general model and

in both the supermodular and submodular cases.

When the separation rate is log-supermodular, the model presented in this paper generates job-

less recoveries and scarring due to job loss in recessions. Suppose that the labor productivity declines

sharply. The decline results in an increase in layoffs and a decline in new hires. But Proposition 4

implies that layoffs increase relatively more for firms employing lower-ability workers, thus leading

to a deterioration in the quality of the pool of the unemployed. Proposition 1 implies that the decline

in the quality of the pool induces firms to post fewer vacancies and to impose more stringent hiring

requirements on unemployed workers, further depressing the job-finding rates of all unemployment

workers. This slowdown in hiring persists past the recovery in the productivity and until the pool

returns to its pre-recession composition. The result is a slow recovery in the employment rate. Propo-

sition 8 implies that the population of workers who become unemployed in a downturn is more

adversely selected than that of workers who become unemployed in booms, so the former group

experiences a more severe unemployment scarring.

But is the separation rate more likely to be log-supermodular or log-submodular based on a

priori reasoning? Proposition 9 shows that the answer to this question depends on whether labor

productivity and ability appear as complements or substitutes in the firms’ flow profits. This in turn

depends on the exact specification of the wage rule. Two of the most natural ways of specifying the

wage rule are the constant wage rate, w(y,A) = w0, and a wage rate that is affine in the worker’s flow

output, w(y,A) = w0 + β0yA. Both of these specifications lead to supermodular flow profits and log-

supermodular separation rates. In fact, any wage rule of the form w(y,A) = w0(y) + β(y)A in which
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the bonus rises more slowly with ability than the total output generates a log-supermodular sepa-

ration rate. This observation gives some credence to the hypothesis that the separation rate is log-

supermodular. The question of whether the separation rate is log-supermodular or log-submodular

is however ultimately an empirical question that requires more data to be brought to bear to be

answered satisfactorily.

8 Discussion

In this section I discuss a number of empirical studies that speak to different aspects of the model

presented in the paper. I exclusively focus on the specification of the model in which the separation

rate is log-supermodular in labor productivity and ability since only such a specification can explain

the phenomena that the paper aims to explain.

8.1 Cyclical variations in the composition of the pool

Cyclical variations in the composition of the unemployed and employed populations have been

documented in several papers. The most relevant studies are by Solon, Barsky, and Parker (1994)

and Mueller (2015). Solon, Barsky, and Parker (1994) find using data from the Panel Study of Income

Dynamics (PSID) that the typical employed worker is more skilled in recessions. This is consistent

with the prediction of my model. Mueller (2015) uses micro data from the Current Population Survey

(CPS) to show that in recessions both the pool of the unemployed and the population of the employed

shift toward higher-ability workers—when ability is proxied for by the logarithm of the wage or its

Mincer residual. He concludes that it must be the case that sorting increases in recessions: the typical

worker who moves from employment to unemployment in a recession is less skilled than the typical

worker who remains employed throughout the recession but more skilled than the typical worker

who was unemployed before the recession.

Although the evidence may seem to contradict the view presented in this paper that a worsening

of adverse selection in recessions is a contributor to slow recoveries, a more careful inquiry proves

otherwise. The discrepancy between the prediction of the model and the stylized facts presented

above stems from the assumption maintained throughout the paper that separations only consist of

quits, and layoffs that are accompanied by firm shutdowns. In practice firing of ill-suited workers is

an important component of total separations for workers in the bottom of the ability distribution.

This loss in realism was tolerated in the previous sections of the paper for the benefit of obtaining

sharp analytical results, which highlighted important economic forces. Here I introduce firings into

the model and show that, once firings are taken into account, the model has no difficulty explaining

the evidence documented by Mueller (2015).

I extend the baseline model by introducing a moral hazard problem à la Shapiro and Stiglitz (1984)
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and allowing the firms to use firings to mitigate the problem. I assume that production requires

workers to exert effort. The flow output produced by a worker of ability y is given by eyA, where

e ∈ {0, 1} indicates the worker’s choice of effort. Workers are heterogeneous in their cost of effort, z,

with z = z > 0 for some workers and z = z > z for the remaining ones. A worker’s choice of effort is

not observable to the firm, but workers who shirk run the risk of being caught and getting fired. Firms

have access to an imperfect monitoring technology that enables them to detect shirking: There is a

signal that indicates shirking and arrives at Poisson rate ζ whenever the worker is shirking and at zero

rate whenever he is exerting effort. The signal is verifiable and is grounds for the worker to be fired at

no cost to the firm. I continue to assume that no-fault firings are sufficiently costly that firms abstain

from using them in equilibrium.

The rest of the model is as in the baseline model with the following minor modifications. Ability

and cost of effort are now distributed in the population according to p.d.f. ĝ supported on Y ×{z, z}.
A firm that is matched to a worker with ability y and cost of effort z observes a signal, which is

drawn from p.d.f. ˆ̀(ω|y, z). I assume that the signal contains information on both components of

the worker’s type. Firms learn both the ability of their employees and their cost of effort immediately

after hiring them. At the beginning of the employment relationship the worker and the firm sign a

wage contract that specifies a wage rate ŵ(y,A, z) to be paid by the firm to the worker for as long as

the employment relationship lasts. The wage can be a function of the worker’s cost of effort, but it

cannot depend on the worker’s (unverifiable) realized choice of effort. This leaves firing as the firms’

only recourse in the event of a worker’s shirking.

Despite its complexity, the model delivers sharp predictions regarding cyclical variations in the

composition of the pool when z is small and z and ζ are both large. Having a small z implies that

workers who have a low cost of effort exert effort in equilibrium. Having a large z, on the other hand,

guarantees that efficiency wages cannot be used to induce the workers with high cost of effort to

exert effort. Therefore, in equilibrium such workers shirk and get fired at rate ζ. The role of assuming

a large ζ is twofold. It implies that the firms’ hiring decisions are little affected by the presence of

workers with high cost of effort—since such workers are fired quickly and with no cost to the firm.

It also implies that the unemployment rate among workers with high cost of effort is close to one

irrespective of labor productivity.

Given these assumptions, the average ability among unemployed workers has a simple expres-

sion. Let λ̂ denote the joint distribution of ability and the cost of effort among unemployed workers,

let n =
∫
ĝ(ỹ, z)dỹ denote the fraction of workers in the population who have high cost of effort,

and let u denote the total unemployment rate. The average ability among unemployed workers

approximately equals
n

u

∫
ỹĝ(ỹ, z)dỹ +

(
1− n

u

)∫
ỹλ̂(ỹ, z)dỹ.

The average ability is the weighted average of two terms: (i) the average ability among the unemploy-
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ment workers who have high cost of effort,
∫
ỹĝ(ỹ, z)dỹ, and (ii) the average ability among the un-

employed workers with low cost of effort,
∫
ỹλ̂(ỹ, z)dỹ. The first term is constant over the course of a

business cycle. The second term decreases in recessions as the pool of the unemployed workers who

have low cost of effort becomes more adversely selected. This was the only effect that was present

in the previous sections of the paper in which no worker had high cost of effort and so n was zero.

When n is positive, however, there is a second effect that can go in the opposite direction: workers

with high cost of effort are always unemployed while the number of workers with low cost of effort

who are unemployed increases in recessions. Therefore in recessions the weight given to the second

term increases. If n is sufficiently large and workers with high cost of effort have a sufficiently low

average ability compared to workers with low cost of effort, the net result is an increase in recessions

in the average ability of unemployed workers and an increase in sorting.

Yet the presence of workers with high cost of effort does not interfere with the mechanism through

which the model generates slow employment recoveries. Such workers are less likely than workers

with low cost of effort to get hired when they are matched with a firm and are quick to get fired if they

are ever hired. So they do not influence the firms’ hiring decisions by much. It is only the distribution

of ability among unemployed workers with low cost of effort that enters the firms’ decision problems

on whether to post a vacancy and what hiring threshold to use when they do post a vacancy. In

recessions the distribution of ability among unemployed workers with z = z deteriorates in the sense

of MLRP—just as in the baseline model—thus leading firms to post fewer vacancies and raise their

hiring threshold and generating a slow recovery.

I end this subsection with a remark on its takeaway. The model analyzed above is clearly special

along several dimensions. But it serves to illustrate an important point that goes beyond this stylized

model: measures of composition that are relevant for the firms’ hiring decisions can move nega-

tively with measures of composition that are observed by the econometrician. Firms only respond

to changes in the distribution of ability among the subset of unemployed workers who are hard

to screen and costly to fire once employed—such workers tend to lie in the middle of the ability

distribution. Measures such as the average log-wage, on the other hand, are coarse statistics of the

distribution of ability in the entire pool.

8.2 Upskilling and downskilling

The model predicts that the hiring threshold used by firms varies countercyclically. In recent con-

tributions, Modestino, Shoag, and Ballance (2015a,b) and Hershbein and Kahn (2016) use the data

on the education and experience requirements of online job postings collected by Burning Glass

Technologies (BGT) to study the relationship between the unemployment rate and job requirements.

The papers establish a causal positive effect of an increase in a county’s unemployment rate on

the education and experience requirements of jobs located in the county. The effect is estimated
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off the variation over time in job requirements within a firm-job-county triple. The authors term

the increase in requirements with an increase in the unemployment rate upskilling ; a reversal of

upskilling following a recovery is termed downskilling.

Hershbein and Kahn (2016) and Modestino, Shoag, and Ballance (2015a) discuss two models that

can rationalize upskilling. Hershbein and Kahn (2016) argue that upskilling represents restructuring

of production by firms in downturns when the opportunity cost of doing so is relatively lower. Firms

postpone adoption of routine-replacing technologies until a downturn forces them to cut costs and

improve efficiency. Modestino, Shoag, and Ballance (2015a) provide evidence of a reversal in up-

skilling following the tightening of the labor market between 2012 and 2014. They also show that their

main findings are robust to restricting the sample to tradable industries. This evidence casts some

doubt on the explanation of upskilling put forward by Hershbein and Kahn (2016). Modestino, Shoag,

and Ballance (2015b) use a partial equilibrium model to rationalize upskilling and downskilling. In

their model the cost of maintaining a vacancy is constant while the option value of waiting for a better

worker increases with slack in the labor market. When the unemployment rate increases, firms take

advantage of the slack by demanding more from their potential hires.

The mechanism proposed by Modestino, Shoag, and Ballance (2015b) runs into difficulties, how-

ever, in general equilibrium where the number of vacancies is determined by free entry of firms. In a

slack labor market entry by firms erodes any potential gain in the option value of waiting for a better

worker. This intuition is easily formalized in a version of my model with no heterogeneity in worker

ability. Recall that the threshold used by firms, ω(λ,A), is only a function of labor productivity,A, and

the composition of the pool, λ—and not a function of the unemployment rate. With homogeneous

workers, λ reduces to a constant degenerate probability distribution, so the hiring threshold only

changes with variations in labor productivity.

The model in the current paper provides an explanation of upskilling and downskilling that works

in general equilibrium. A temporary decline in labor productivity leads to a persistent increase in

the unemployment rate and a persistent worsening of the distribution of ability in the unemployed

pool. While the increase in the unemployment rate has no effect on the firms’ hiring threshold, the

deterioration of the distribution of ability leads to an increase in the threshold. The result is a positive

co-movement of the unemployment rate and the hiring requirements, which is mediated through

changes in the composition of the pool.

8.3 Job destruction, separations, quits, and layoffs

Much has been made of the distinction between the separation rate and the job destruction rate

and their cyclicalities. In a number of influential contributions, Davis and Haltiwanger (1990, 1992)

and Blanchard and Diamond (1990) demonstrate using firm-level data that the job destruction rate

is highly countercyclical. They conclude that the increase in unemployment in recessions results
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more from an increase in job destruction than a decrease in job creation. In a more recent devel-

opment, Hall (2005b) and Shimer (2012a) articulate a “new view” of the labor market according

to which separations are largely acyclical and play a minor role in explaining the volatility of the

unemployment rate. Davis however takes issues with Hall’s conclusions in his discussion of Hall

(2005b). Among other comments, he draws attention to the distinction between layoffs and quits

and the cyclical variations in the composition of separations. Quits are procyclical while layoffs are

countercyclical. The layoff-separation ratio is highly countercyclical ranging in value from less than

0.2 in booms to more than 0.7 in recessions. Quits and layoffs moreover have very different effects

on the workers’ employment prospects. Layoffs are associated with larger earning losses and are

followed by significantly longer unemployment spells than are quits.

A divergence between the cyclicalities of quits and layoffs is also an important feature of the

model presented in this paper. The quit rate in the model is independent of ability and acyclical while

the layoff rate is decreasing in ability and countercyclical. The layoff-separation ratio is therefore

countercyclical in accordance with the stylized fact discussed in the previous paragraph. It is exactly

this combination of ability-independent and acyclical quits and ability-dependent and countercycli-

cal layoffs that enables the model to generate a countercyclical and log-supermodular separation

rate, a worsening of adverse selection in recessions, and slow employment recoveries.

But while the log-supermodularity of the separation rate is crucial for the mechanism highlighted

in the paper, its countercyclicality plays no role. It is rather an artifact of the counterfactual assump-

tion of a constant quit rate, which was made for the sake of analytical tractability. Incorporating

quits, which vary endogenously with the state of economy, would have considerably complicated

the model beyond the point where an analytical characterization is possible. One can however get

a sense of what to expect in a setting with procyclical quits by studying a simple extension of the

model in which the quit rate is increasing in labor productivity. The quit rate can be chosen in a

way that the resulting average separation rate is mostly acyclical—consistent with the new view of

the labor market—but such that the separation rate continues to be log-supermodular—as in the

baseline model. Since the results of the paper only make use of the log-supermodularity assumption,

none of them would be affected by this modification. In Appendix C, I formally explore this extension

of the model and show that the conclusions of the paper are robust to the introduction of a procyclical

quit rate.

8.4 Recruiting intensity and movements of the Beveridge curve

Economists have paid much attention to the shifting out in the Great Recession of the Beveridge

curve—the negative empirical relationship between the unemployment rate and the vacancy rate

over the course of a business cycle. This shift represents a deterioration of the aggregate matching

process in the economy. The outward shift of the Beveridge curve is however not unique to this

26



recession. Diamond and Şahin (2015) find using unemployment data from the BLS and historical

data on vacancy rates constructed by Barnichon (2010) that the Beveridge curve shifted out in seven

out of eight completed business cycles since 1950. In three of the recessions the Beverige curve

shifted back inward at the end of the recovery.

Cyclical variations in the matching process are also evident in other labor market statistics. Using

establishment-level data in the Job Openings and Labor Turnover Survey (JOLTS), Davis, Faberman,

and Haltiwanger (2012, 2013) find that the job-filling rate increases by less in the aftermath of the

Great Recession than is implied by standard search theoretic models. They attribute the discrepancy

to variations in recruiting intensity—instruments other than vacancies (such as screening methods

and hiring standards) that are used by firms to influence their job-filling rates. Their constructed

index of recruiting intensity is highly cyclical, falling by more than 20 percent from early 2007 to

late 2009. The authors show that recruiting intensity partly explains the recent breakdown in the

matching function, delivers a better-fitting empirical Beveridge curve, and accounts for a large share

of fluctuations in aggregate hires.

The model presented in this paper generates cyclical variations in recruiting intensity and move-

ments of the Beveridge curve that resemble the patterns documented by Davis, Faberman, and Halti-

wanger (2012, 2013) and Diamond and Şahin (2015). The hiring threshold used by the firms in the

model co-moves negatively with changes in the composition of the unemployed pool. In downturns

the pool becomes more adversely selected in the sense of MLRP, leading firms to respond by rais-

ing their hiring standards. The model thus generates a procyclical recruiting intensity—when the

recruiting intensity is measured as the inverse of the hiring threshold used by the firms. The model

also generates a shifting out of the Beveridge curve in recessions. The rise in the hiring standards

in recessions results in a decline in the probability that a match leads to a hire, thus leading to an

increase in the number of vacancies that are needed in a recession to bring about a certain decline in

the unemployment rate. This deterioration in the matching process constitutes an outward shift in

the Beveridge curve.

9 Concluding Remarks

In this paper I developed an equilibrium search model with worker heterogeneity and adverse se-

lection in the labor market. The model can provide a unified explanation of a number of hitherto

unrelated empirical findings. Selective layoff of less-productive workers in recessions leads to a wors-

ening of the distribution of ability in the unemployed pool. This compositional deterioration leads

to scarring of workers who lose their jobs in recessions, upskilling by firms, a lowering of recruiting

intensity, a shifting out of the Beveridge curve, and a jobless recovery. All these theoretical predictions

are consistent with the findings of large empirical literatures. Simple extensions of the model can
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additionally match the stylized facts on cyclical changes in the average ability of unemployed workers

and the cyclicality of separations, quits, and layoffs.

The framework can help uncover policy implications that are elusive in models without het-

erogeneity. The model economy is inefficient due both to undirected search and asymmetric in-

formation. This is in sharp contrast to the efficiency result of Hosios (1990) for directed search

models. In addition to the usual inefficiencies of undirected search models, inefficiencies arise in

this model since firms do not internalize the informational externalities working through layoffs: a

layoff not only affects the firm and the worker involved, but also affects other job seekers by changing

the composition of the pool of the unemployed and generating information. This informational

externality provides a role for the policy to improve efficiency by influencing the extent to which

employers can condition their hiring and layoff decisions on information about individual workers.

In future work I intend to investigate the question of optimal policy in this framework.
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A Proofs

A.1 Proof of Proposition 1

I prove the proposition through a sequence of simple lemmas.

Lemma 1. J(ω, λ,A) is strictly increasing in ω and increasing in λ and A.

Proof. J(ω, λ,A) is strictly increasing in ω since `(ω|y) satisfies the strict MLRP and J(ω, λ,A) is the

expectation of Π(y,A), which is a strictly increasing function of y, with respect to the nondegenerate

distribution λ and conditional on ω.

Let λ1 and λ2 be two probability distributions over Y such that λ1 is larger than λ2 in the sense of

MLRP. Let λ1(·|ω) and λ2(·|ω) denote the posterior distributions conditional on ω corresponding to λ1

and λ2. By Bayes’ rule,

λ1(y|ω)

λ2(y|ω)
=

`(ω|y)λ1(y)∫
`(ω|ỹ)λ1(ỹ)dỹ

`(ω|y)λ2(y)∫
`(ω|ỹ)λ2(ỹ)dỹ

=

∫
`(ω|ỹ)λ2(ỹ)dỹ∫
`(ω|ỹ)λ1(ỹ)dỹ

λ1(y)

λ2(y)
,

which is an increasing function of y by assumption. Therefore, λ1(·|ω) is larger than λ2(·|ω) in the

sense of MLRP and so in the sense of first-order stochastic dominance. The lemma then follows the

fact that J(ω, λ,A) is the expected value of Π(y,A) with respect to λ(y|ω) and that Π is increasing in

both of its arguments.

The following is an immediate corollary of the lemma.

Corollary 1. ω(λ,A) is decreasing in its arguments.

I can use this corollary to prove the following lemma.

Lemma 2. P (y, λ,A) is increasing in its arguments.

Proof. Note that P (y, λ,A) = 1 − L(ω(λ,A)|y). Since ` satisfies the MLRP, L is decreasing in y and P

is increasing in y. Since ω(λ,A) is decreasing in λ and A, P is increasing in λ and A.

Lemma 3. q(λ,A) is decreasing in its arguments.

Proof. The Fréchet derivative of q(λ,A) with respect to the probability measure λ is a function whose

value at y′ is given by

− 1

ρk
q(λ,A)2P (y′, λ, A)Ψ(y′, A),
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where Ψ(y,A) = Π(y,A) − k.22 Consider a small change in λ from λ0 to λ1 = λ0 + δλ such that λ1 is

larger than λ0 in the sense of MLRP. The resulting change in q is given by

δq = − 1

ρk
q(λ0, A)2

∫
P (ỹ, λ0, A)Ψ(ỹ, A)δλ(ỹ)dỹ

= − 1

ρk
q(λ0, A)2

[∫
P (ỹ, λ0, A)Ψ(ỹ, A)λ1(ỹ)dỹ −

∫
P (ỹ, λ0, A)Ψ(ỹ, A)λ0(ỹ)dỹ

]
. (23)

I need to show that the term in brackets is positive. In order to do this, I prove a few statements about

the following auxiliary function:

Ω(y) = P (y, λ0, A)Ψ(y,A)− ρk

q(λ0, A)
.

To simplify the exposition I assume that Ω(y) is differentiable in y, but the properties I prove below

are true even without differentiability. First, note that∫
Ω(ỹ)λ0(ỹ)dỹ =

∫
P (ỹ, λ0, A)(Π(ỹ, A)− k)λ0(ỹ)dỹ − ρk

q(λ0, A)
= 0, (24)

where I am using the fact that q(λ0, A), by definition, satisfies the free entry condition (7). Second,

the derivative of Ω(y) is given by

Ω′(y) =
∂P (y, λ0, A)

∂y
Ψ(y,A) + P (y, λ0, A)

∂Ψ(y,A)

∂y
.

Note that Π and so Ψ are strictly increasing functions of y. So the second term in the above expres-

sion is always positive. Furthermore, maxy∈Y Ψ(y,A) is positive, so the first term is also positive for

sufficiently large y. Therefore, there exists some y0 such that Ω(y) < 0 for all y < y0 and Ω(y) > 0 for

all y > y0. Finally,

y0

22For details of this derivation see Appendix B.1.
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∫
Ω(ỹ)λ1(ỹ)dỹ =

∫
Ω(ỹ)

λ1(ỹ)

λ0(ỹ)
λ0(ỹ)dỹ

=

∫ y0

Ω(ỹ)
λ1(ỹ)

λ0(ỹ)
λ0(ỹ)dỹ +

∫
y0

Ω(ỹ)
λ1(ỹ)

λ0(ỹ)
λ0(ỹ)dỹ

≥
∫ y0

Ω(ỹ)
λ1(y0)

λ0(y0)
λ0(ỹ)dỹ +

∫
y0

Ω(ỹ)
λ1(y0)

λ0(y0)
λ0(ỹ)dỹ

=
λ1(y0)

λ0(y0)

∫
Ω(ỹ)λ0(ỹ)dỹ = 0, (25)

where in the inequality I am using the assumption that λ1(y)/λ0(y) is increasing in y. Equation (23)

can be rewritten in terms of Ω as

δq = − 1

ρk
q(λ0, A)2

[∫
Ω(ỹ)λ1(ỹ)dỹ −

∫
Ω(ỹ)λ0(ỹ)dỹ

]
≤ 0,

where I am using equations (24) and (25). This proves that q(λ,A) decreases when λ is increased in

the sense of MLRP.

The derivative of q(λ,A) with respect to A is given by23

∂q(λ,A)

∂A
= −q(λ,A)2

ρk

∫
P (ỹ, λ, A)

∂Ψ(ỹ, A)

∂A
λ(ỹ)dỹ,

which is negative since Π and so Ψ are increasing functions of A. This completes the proof of the

lemma.

Proof of proposition 1. The first part of the proposition is proved in corollary 1. The second part

of the proposition is a consequence of the fact that θ is a decreasing function of q. This also implies

that p(λ,A) is increasing in its arguments. The last part of the proposition is due to P (y, λ,A) and

p(λ,A) both being positive and increasing functions of their arguments.

A.2 Proof of Proposition 2

By equation (14), the logarithm of the share of unemployed workers who have ability y at time t+ δt

is given by

log λt+δt(y) = log λt(y) +

∫ t+δt

t

[
Γ(y, ut̃, At̃)−

∫
Γ(ỹ, ut̃, At̃)λt̃(ỹ)dỹ

]
dt̃.

Note that the integral is not an Itô integral; it is a Riemann integral of the sample path of a diffusion

process. It is easy to verify that Γ(y, ut, At) has a continuous path wheneverAt has a continuous path.

But At is a diffusion process with paths that are continuous almost surely. Therefore for small δt the

above equation can be approximated by

log λt+δt(y) ≈ log λt(y) +

[
Γ(y, ut, At)−

∫
Γ(ỹ, ut, At)λt(ỹ)dỹ

]
δt.

23For details of this derivation see Appendix B.2.
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Let y and y′ be two arbitrary abilities. The above equation implies that

log λt+δt(y)− log λt+δt(y
′) ≈ log λt(y)− log λt(y

′) +
[
Γ(y, ut, At)− Γ(y′, ut, At)

]
δt.

Therefore,

log
λt+δ(y)

λt(y)
− log

λt+δ(y
′)

λt(y′)
≈
[
Γ(y, ut, At)− Γ(y′, ut, At)

]
δt.

If Γ(y, ut, At) is an increasing function of y, the right-hand side of the above equation will be positive

for all y > y′. So the left-hand side will also be positive for all y > y′. This implies that λt+δt(y)/λt(y)

is an increasing function of y. Thus, λt+δt is larger than λt in the sense of MLRP.

A.3 Proof of Proposition 3

By equation (14), the logarithm of the share of unemployed workers at time δt who have ability y can

be approximated for small δt by

log λδt(y) ≈ log λ0(y) +

[
Γ(y, u0, A0)−

∫
Γ(ỹ, u0, A0)λ0(ỹ)dỹ

]
δt.

Therefore, for all y and y′,

log
λδt(y)

λ0(y)
− log

λδt(y
′)

λ0(y′)
≈
[
Γ(y, u0, A0)− Γ(y′, u0, A0)

]
δt

=

∫ y

y′

∂Γ(y, u0, A0)

∂y

∣∣∣∣
y=ỹ

dỹδt.

Now consider an alternative scenario in which the state of the economy at time zero is increased

to A0 + δA0 for some small positive δA0 while u0 (and hence λ0) is kept fixed. Let λ′δt denote the

logarithm of the distribution of unemployed workers at time δt under this alternative scenario. By a

similar argument,

log
λ′δt(y)

λ0(y)
− log

λ′δt(y
′)

λ0(y′)
≈
∫ y

y′

∂Γ(y, u0, A0 + δA0)

∂y

∣∣∣∣
y=ỹ

dỹδt

≈
∫ y

y′

∂Γ(y, u0, A0)

∂y

∣∣∣∣
y=ỹ

dỹδt+

∫ y

y′

∂2Γ(y, u0, A)

∂A∂y

∣∣∣∣
y=ỹ,A=A0

dỹδtδA.

Therefore,

log
λ′δt(y)

λδt(y)
− log

λ′δt(y
′)

λδt(y′)
=

(
log

λ′δt(y)

λ0(y)
− log

λ′δt(y
′)

λ0(y′)

)
−
(

log
λδt(y)

λ0(y)
− log

λδt(y
′)

λ0(y′)

)
=

∫ y

y′

∂2Γ(y, ut, A)

∂A∂y

∣∣∣∣
y=ỹ,A=At

dỹδtδA.

If ∂2Γ(y, u,A)/∂A∂y is positive, then the right-hand side is positive for all y > y′, which implies that

λ′δt(y)/λδt(y) is increasing in y. Therefore, if ∂2Γ(y, u,A)/∂A∂y is positive at u = ut and A = A0, then

λδt increases in the sense of MLRP when A0 is increased to A0 + δA0.
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A.4 Proof of Proposition 4

I prove the proposition for the case that s(y,A) is log-supermodular. The case of a log-submodular

separation rate is proved identically. Let Ψ(y,A) = Π(y,A) − k. Given that the monitoring structure

is additive,

Lσ(ω|y) = Φ

(
ω − y
σ

)
,

and so

`σ(ω|y) =
1

σ
Φ′
(
ω − y
σ

)
,

I use a σ subscript to make the dependence of endogenous variables on σ clear. The indifference

equation that defines ωσ can be written as∫
Ψ(ỹ, A∗)Φ′

(
ωσ(λ∗σ, A

∗)− ỹ
σ

)
λ∗σ(ỹ)dỹ = 0, (26)

where λ∗σ denotes the steady state distribution of ability among the unemployed corresponding toA∗

when the monitoring structure is given by `σ. The free entry condition is given by

qσ(λ∗σ, A
∗)

∫
Ψ(ỹ, A∗)

(
1− Φ

(
ωσ(λ∗σ, A

∗)− ỹ
σ

))
λ∗σ(ỹ)dỹ = ρk. (27)

I first show that, as σ goes to infinity, ωσ(λ∗σ, A
∗) → −∞ and (ωσ(λ∗σ, A

∗) − y)/σ → −∞, and

qσ(λ∗σ, A
∗) and pσ(λ∗σ, A

∗) remain bounded. Consider a sequence {σk} that goes to infinity. I consider

various possible cases for ωσk(λ
∗
σk , A

∗).

Suppose that there is a subsequence {jk} over which ωσk(λ
∗
σk , A

∗) is convergent. Then,

Φ′

(
ωσjk (λ∗σjk , A

∗)− y
σjk

)
→ Φ′(0).

Since Y is compact, by Prokhorov’s theorem, {λ∗σjk} has a weak∗ limit, λ∗∞, possibly by going to

another subsequence. Therefore, since Ψ is continuous in y and bounded, in the limit, equation

(26) is given by ∫
Ψ(ỹ, A∗)Φ′(0)λ∗∞(ỹ)dỹ = 0,

and since Φ′(0) > 0, ∫
Ψ(ỹ, A∗)λ∗∞(ỹ)dỹ = 0.

Furthermore, (
1− Φ

(
ωσjk (λ∗σjk , A

∗)− ỹ
σjk

))
→ (1− Φ(0)) > 0.
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The last two equations together with the free entry equation (27) and Prokhorov’s theorem imply that,

over a further subsequence, qσjk (λ∗σjk , A
∗) → ∞, and so pσjk (λ∗σjk , A

∗) → 0 and fσjk (y, λ∗σjk , A
∗) → 0

for all y. This together with equation (17) implies that λ∗∞(y) = g(y). Therefore,∫
Ψ(ỹ, A∗)g(ỹ)dỹ =

∫
Ψ(ỹ, A∗)λ∗∞(ỹ)dỹ = 0,

which is a contradiction with the assumption that
∫

Ψ(ỹ, A∗)g(ỹ)dỹ > 0.

Therefore, the absolute value of ωσk(λ
∗
σk , A

∗) must grow without bound. Since y is bounded and

Φ′ has a compact range, the following sequence must have a convergent subsequence whose limit is

independent of y:

Φ′
(
ωσk(λ

∗
σk , A

∗)− y
σk

)
Let Φ′∞ denote this limit. Using equation (26), and again using Prokhorov’s theorem and possibly

going to a subsequence, I get that

Φ′∞

∫
Ψ(ỹ, A∗)λ∗∞(ỹ)dỹ = 0.

If Φ′∞ > 0, then (ωσk(λ
∗
σk , A

∗) − y)/σk must have a finite limit over the subsequence, because Φ is

assumed to have support on the entire reals. Then by an argument similar to the one used above, I

reach a contradiction with the free entry condition.

Therefore, it must be the case that Φ′∞ = 0, and so that the absolute value of (ωσk(λ
∗
σk , A

∗)− y)/σk

grows unbounded on any subsequence. Suppose that (ωσk(λ
∗
σk , A

∗) − y)/σk goes to +∞ over some

subsequence. Then Φ((ωσk(λ
∗
σk , A

∗) − y)/σk) goes to one over that subsequence. This would again

imply using the free entry condition that qσk(λ
∗
σk , A

∗)→∞ and so λ∗σk → g in the weak∗ topology over

some subsequence. Therefore,∫
Ψ(ỹ, A∗)λ∗σk(ỹ)dỹ →

∫
Ψ(ỹ, A∗)λ∗∞(ỹ)dỹ =

∫
Ψ(ỹ, A∗)g(ỹ)dỹ > 0.

This contradicts the hypothesis that firms are optimally using a threshold that grows to +∞, because

they can strictly benefit from using a threshold that is equal to −∞ instead. So, it must be the case

that

lim
σ→∞

ωσ(λ∗σ, A)− y
σ

= −∞.

It is also easy to see why qσ(λ∗σ, A
∗) and pσ(λ∗σ, A

∗) must remain bounded as σ →∞. Suppose that

qσ(λ∗σ, A
∗) goes to infinity. Then pσ(λ∗σ, A

∗) and fσjk (y, λ∗σjk , A
∗) go to zero and λ∗σ converges to g in the

weak* topology. This implies that the returns to posting additional vacancies is strictly positive in the

limit σ →∞, a contradiction to the assumption that there are a vanishing number of vacancies in the

limit. Suppose that pσ(λ∗σ, A
∗) goes to infinity. Then the net present value of a vacancy is negative.

This contradicts the existence of a positive number of vacancies in the limit σ →∞.
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I next argue that the last term in equation (18) goes to zero as σ goes to infinity. Implicitly

differentiating equation (26) with respect to A and evaluating at A∗ results in∫
∂Ψ(ỹ, A∗)

∂A
Φ′
(
ωσ(λ∗σ, A

∗)− ỹ
σ

)
λ∗σ(ỹ)dỹ+

1

σ

∂ωσ(λ∗σ, A
∗)

∂A

∫
Ψ(ỹ, A∗)Φ′′

(
ωσ(λ∗σ, A

∗)− ỹ
σ

)
λ∗σ(ỹ)dỹ = 0.

Therefore,

∂ωσ(λ∗σ, A
∗)

∂A
=

−σ
∫
∂Ψ(ỹ, A∗)

∂A
Φ′
(
ωσ(λ∗σ, A

∗)− ỹ
σ

)
λ∗σ(ỹ)dỹ∫

Ψ(ỹ, A∗)Φ′′
(
ωσ(λ∗σ, A

∗)− ỹ
σ

)
λ∗σ(ỹ)dỹ

.

So the last term in equation (18) is given by

∂`(ωσ(λ∗σ, A
∗)|y)

∂y

∂ωσ(λ∗σ, A
∗)

∂A
=

1

σ
Φ′′
(
ωσ(λ∗σ, A

∗)− y
σ

) ∫ ∂Ψ(ỹ, A∗)

∂A
Φ′
(
ωσ(λ∗σ, A

∗)− ỹ
σ

)
λ∗σ(ỹ)dỹ∫

Ψ(ỹ, A∗)Φ′′
(
ωσ(λ∗σ, A

∗)− ỹ
σ

)
λ∗σ(ỹ)dỹ

.

Given that y belongs to a compact set, as σ goes to infinity, λ∗σ converges to some λ∗∞ in the weak*

topology, possibly by going to a subsequence. Therefore, since (ωσ(λ∗σ, A
∗) − y)/σ → −∞ and so

Φ′′ ((ωσ(λ∗σ, A
∗)− y)/σ)→ 0, and using the dominated convergence theorem, I have that∫

Ψ(ỹ, A∗)Φ′′
(
ωσ(λ∗σ, A

∗)− ỹ
σ

)
λ∗σ(ỹ)dỹ

Φ′′
(
ωσ(λ∗σ, A

∗)− y
σ

) →
∫

Ψ(ỹ, A∗)λ∗∞(ỹ)dỹ > 0,

where the inequality follows from the free entry condition. This together with the assumptions that

y belongs to a compact set and Φ′ is bounded proves that the last term in equation (18) goes to zero

as σ goes to infinity.

I next focus on the second term. First note that24

∂pσ(λ∗σ, A
∗)

∂A
=

[
1

ρk
m′
(

1

ρk

∫
Ψ(ỹ, A∗)

(
1− Φ

(
ωσ(λ∗σ, A

∗)− ỹ
σ

))
λ∗σ(ỹ)dỹ

)]
×
[∫ (

1− Φ

(
ωσ(λ∗σ, A

∗)− ỹ
σ

))
∂Ψ(ỹ, A∗)

∂A
λ∗σ(ỹ)dỹ

]
,

which remains bounded as σ goes to infinity given that y belongs to a compact set and qσ(λ∗σ, A
∗)

remains bounded as σ goes to infinity. I have also shown that pσ(λ∗σ, A
∗) remains bounded as σ goes to

infinity. Therefore, since s(y,A∗) is positive and independent of σ, the following expression remains

bounded as σ goes to infinity:

∂pσ(λ∗σ, A
∗)

∂A
− pσ(y, λ∗σ)

s(y,A∗)

∂s(y,A∗)

∂A

Finally,
∂Lσ(ωσ(λ∗σ, A

∗)|y)

∂y
= − 1

σ
Φ′
(
ωσ(λ∗σ, A

∗)− y
σ

)
,

24The details of this derivation are presented in Appendix B.2.
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which goes to zero as σ goes to infinity since Φ′ is bounded. Therefore, the second term in equation

(18) also goes to zero as σ goes to infinity.

The first term in equation (18) is itself the product of two terms: The first one is fσ(y, λ∗σ, A
∗) =

pσ(λ∗σ, A
∗)(1−Φ((ωσ(λ∗σ, A

∗)− y)/σ), which gets close to pσ(λ∗σ, A
∗) and so remains positive as σ goes

to infinity. The second one is independent of σ and positive by strict log-supermodularity of s(y,A).

So the first term in equation (18) dominates the expression for sufficiently large σ. This completes

the proof of the proposition.

A.5 Proof of Proposition 6

Let lτt (y; y′) = log(λτt (y)/λτt (y′)). To prove the proposition, it is sufficient to show that lτt (y; y′) is

decreasing over time at all t and for all y > y′. By equation (22),

d

dt
lτt (y; y′) = −p(θt)

[
P (y, λτt , At)− P (y′, λτt , At)

]
,

which is negative for all y > y′, all At, and all t ≥ τ , since p(θt) is positive and P is an increasing

function of y by Lemma 2.

A.6 Proof of Proposition 8

I prove the proposition for the case that s(y,A) is log-supermodular. The case of a log-submodular

separation rate is proved identically. The initial distribution of ability in the cohort separated at time

τ is given by

λττ (y) =
s(y,Aτ )(1− uτ (y))∫
s(ỹ, Aτ )(1− uτ (ỹ))dỹ

. (28)

Let y > y′. By equation (28),

log
λττ (y)

λττ (y′)
=
[
log s(y,Aτ )− log s(y′, Aτ )

]
+
[
log(1− uτ (y))− log(1− uτ (y′))

]
.

The first term is strictly increasing in Aτ since s is strictly log-supermodular. The second term is

independent of Aτ since uτ is predetermined at time τ . Therefore, an increase in Aτ results in an

increase in λττ (y)/λττ (y′) for all y > y′, and so an increase in λττ in the sense of MLRP.

Now consider a continuous path for labor productivity {At}t≥0 and another continuous path

{A′t}t≥0 that is identical to {At}t≥0 except in the interval (τ − ε, τ + ε) over which A′t > At. I keep

A′τ −Aτ constant as I make ε small. Let λτt and (λ′)τt denote the time t distribution of ability in cohort

τ given {At}t≥0 and {A′t}t≥0 respectively. By assumptionAτ+ε = A′τ+ε. Furthermore, if ε is sufficiently

small, then θτ+ε is arbitrarily close to θ′τ+ε. Therefore, by Proposition 5, ε can be chosen sufficiently

small such that

f
(
y, (λ′)ττ , A

′
τ , θ
′
τ

)
> f(y, λττ , Aτ+ε, θτ+ε),
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Given that the distribution of ability in a cohort changes continuously over time and f is continuous

in λ, if ε is sufficiently small, then

f
(
y, (λ′)ττ+ε, A

′
τ+ε, θ

′
τ+ε

)
> f(y, λττ+ε, Aτ+ε, θτ+ε).

A.7 Proof of Proposition 9

I first prove a lemma about the shape of the value function in a model with no machine breakdowns

(that is, with δ = 0). The proposition is then proved using a perturbation method.

Lemma 4. Let Π0(y,A) be the solution to the HJB equation (1) with δ = 0, w(y,A) = w0(y) + β(y)A,

and h(c) = αcαc−α−1, and let γ0(y,A) = 1−H(Π0(y,A)).

1. Suppose that ∂2yAπ(y,A) > 0. There exists α∗,K > 0 such that if α > α∗ and w′0(y) < K for all y,

then ∂2yAγ0(y,A) > 0 for all (y,A) ∈ Y ×
(
A,A

)
.

2. Suppose that ∂2yAπ(y,A) < 0. There exists α∗,K > 0 such that if α > α∗ and w′0(y) > −K for all

y, then ∂2yAγ0(y,A) < 0 for all (y,A) ∈ Y ×
(
A,A

)
.

Proof. To simplify the notation let r = ρ + ς denote the effective interest rate. When δ = 0 the HJB

equation can be written as

rΠ(y,A) = (y − β(y))A+ ςk − w0(y) + µA
∂Π(y,A)

∂A
+ µA2∂

2Π(y,A)

∂A2
. (29)

Any solution to equation (29) is given by

Π0(y,A) =
y − β(y)

r − µ
A+

ςk − w0(y)

r
+B1(y)A−θ +B2(y)Aθ,

where θ =
√
r/µ > 1 and B1(y) and B2(y) are determined by the boundary conditions:

B1(y) =
y − β(y)

θ(r − µ)

(
A

2θ
Aθ+1 −Aθ+1

A2θ

A
2θ −A2θ

)
,

B2(y) =
−(y − β(y))

θ(r − µ)

(
A
θ+1 −Aθ+1

A
2θ −A2θ

)
.

Define

B1 =
A

2θ
Aθ+1 −Aθ+1

A2θ

A
2θ −A2θ

,

B2 =
A
θ+1 −Aθ+1

A
2θ −A2θ

,
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and let

κ(y) = ςk − w0(y),

Ξ(A) =
r

r − µ

(
A+

1

θ
B1A

−θ − 1

θ
B2A

θ

)
.

Then Π0(y,A) can be written compactly as

Π0(y,A) =
1

r

(
∂π(y,A)

∂A
Ξ(A) + κ(y)

)
,

where I am using the fact that y − β(y) = ∂π(y,A)/∂A. The layoff rate is given by

γ0(y,A) = cαΠ0(y,A)−α.

So

∂2γ0(y,A)

∂y∂A
=

αcα

Π0(y,A)α+2

[
(1 + α)

∂Π0(y,A)

∂y

∂Π0(y,A)

∂A
−Π0(y,A)

∂2Π0(y,A)

∂y∂A

]
=

αcαΞ′(A)

r2Π0(y,A)α+2

[
α
∂π(y,A)

∂A

∂2π(y,A)

∂y∂A
Ξ(A) + (1 + α)κ′(y)

∂π(y,A)

∂A
− κ(y)

∂2π(y,A)

∂y∂A

]
.

(30)

I next show that Ξ(A) is positive and increasing for all A ∈
(
A,A

)
. This will allow me to sign the

expression in equation (30). The derivative of Ξ is given by

Ξ′(A) =
r

r − µ

[
1−B1A

−θ−1 −B2A
θ−1
]

=
r

r − µ

[
1−

(
A

2θ
Aθ+1 −Aθ+1

A2θ

A
2θ −A2θ

)
A−θ−1 −

(
A
θ+1 −Aθ+1

A
2θ −A2θ

)
Aθ−1

]

=
r

(r − µ)Aθ+1

[
Aθ+1 − A

2θ
Aθ+1 +A

θ+1
A2θ −Aθ+1

A2θ +Aθ+1A2θ

A
2θ −A2θ

]

=
r

(r − µ)Aθ+1

[
Aθ+1 − A

2θ −A2θ

A
2θ −A2θ

Aθ+1 − A2θ −A2θ

A
2θ −A2θ

A
θ+1

]
.

Ξ is increasing in A if and only if the term in brackets is positive. Define x1 = A2θ, x2 = A
2θ

, and

x = A2θ. Then x = ηx1 + (1− η)x2, where η = (x2 − x)/(x2 − x1) ∈ [0, 1]. So the term in brackets can

be written as

Aθ+1 − ηAθ+1 − (1− η)A
θ+1

= (ηx1 + (1− η)x2)
θ+1
2θ − ηx

θ+1
2θ

1 − (1− η)x
θ+1
2θ

2 .

Note that since θ > 1, the function x 7→ x(θ+1)/2θ is strictly concave. Therefore, by Jensen’s inequality,

(ηx1 + (1− η)x2)
θ+1
2θ − ηx

θ+1
2θ

1 − (1− η)x
θ+1
2θ

2 ≥ 0,

with inequality strict whenever A < A < A. This proves that Ξ is strictly increasing in A over
(
A,A

)
.
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Given that Ξ is increasing, I only need to show that Ξ (A) > 0 in order to prove that Ξ(A) is positive

for all A ∈
[
A,A

]
:

Ξ (A) =
r

r − µ

[
A+

1

θ
B1A

−θ − 1

θ
B2A

θ

]
= A+

r

(r − µ)θ

(
A

2θ
Aθ+1 −Aθ+1

A2θ

A
2θ −A2θ

)
A−θ − 1

θ

(
A
θ+1 −Aθ+1

A
2θ −A2θ

)
Aθ

=
r

(r − µ)θ
(
A

2θ −A2θ
) [θA2θ

A− θA2θ+1 +A
2θ
A−Aθ+1

Aθ −Aθ+1
Aθ +A2θ+1

]
=

r

(r − µ)θ
(
A

2θ −A2θ
) [(θ + 1)A

2θ
A− (θ − 1)A2θ+1 − 2A

θ+1
Aθ
]

=
r

(r − µ)θ
(
A

2θ −A2θ
) [((θ + 1)A

θ−1 − 2Aθ−1
)
A
θ+1

A− (θ − 1)A2θ+1
]

>
r

(r − µ)θ
(
A

2θ −A2θ
) [((θ + 1)Aθ−1 − 2Aθ−1

)
A
θ+1

A− (θ − 1)A2θ+1
]

=
r(θ − 1)

(r − µ)θ
(
A

2θ −A2θ
) [Aθ+1

Aθ −A2θ+1
]
> 0,

where the inequalities are both consequences of the assumptions that θ > 1 and A > A.

I can now determine the sign of the expression in equation (30). Given that Ξ′(y) > 0, the sign of

∂2yAγ0(y,A) is determined by the sign of the following expression:

α
∂π(y,A)

∂A

∂2π(y,A)

∂y∂A
Ξ(A) + (1 + α)κ′(y)

∂π(y,A)

∂A
− κ(y)

∂2π(y,A)

∂y∂A
.

Note that α does not show up in π, κ, or Ξ, so as α gets large, the sign of the above expression is

determined by the sign of the following expression

∂π(y,A)

∂A

∂2π(y,A)

∂y∂A
Ξ(A)− w′0(y)

∂π(y,A)

∂A
.

Thus, for large α, if ∂2yAπ(y,A) is positive and w′0(y) is not too positive, then ∂2yAγ0(y,A) > 0, and if

∂2yAπ(y,A) is negative and w′0(y) is not too negative, then ∂2yAγ0(y,A) < 0.

Proof of proposition 9. I prove the proposition for the case that π(y,A) is supermodular. The

other case is proved identically. Let γ(y,A) = 1−H(Π(y,A)) denote the probability of a layoff condi-

tional on a machine breakdown. The separation rate is log-supermodular if the following expression

is positive:

∂2

∂y∂A
log s(y,A) =

1

(ς + δγ(y,A))2

[
δ(ς + δγ(y,A))

∂2γ(y,A)

∂y∂A
− δ2∂γ(y,A)

∂y

∂γ(y,A)

∂A

]
.

The assumption that Π(y,A) and its first two derivatives vary smoothly with δ implies that ∂2yAγ(y,A)

is a smooth function of δ. Therefore, by Taylor’s theorem,

∂2

∂y∂A
log s(y,A) =

δ

ς

∂2γ0(y,A)

∂y∂A
+R(δ; y,A), (31)
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where the residual R is second order:

lim
δ→0

R(δ; y,A)

δ
= 0,

and convergence is uniform in y and A since y and A belong to compact sets. Now, by Lemma

4, for any open interval A contained in
[
A,A

]
, I can choose a closed set C ⊂

[
y, y
]
×
[
A,A

]
that

contains Y × A, a sufficiently large α, and a sufficiently small bound on w′0 such that γ0(y,A) is

strictly supermodular over C. By equation (31), then, I can additionally choose δ sufficiently small

to guarantee that log s(y,A) is strictly supermodular over C and hence over Y ×A.

B Algebra

B.1 Derivatives with respect to λ

Throughout the proof, I let Ψ(y,A) = Π(y,A)− k and let ∂F(λ)/∂λ(y′) denote the Fréchet derivative

of function F of λ with respect to λ evaluated at point y′ ∈ Y .

The indifference equation that defines ω(λ,A), equation (6), can be written as∫
Ψ(ỹ, A)`(ω(λ,A)|ỹ)λ(ỹ)dỹ = 0. (32)

Differentiating with respect to λ,

Ψ(y′, A)`(ω(λ,A)|y′) +
∂

∂ω

(∫
Ψ(ỹ, A)`(ω|ỹ)λ(ỹ)dỹ

) ∣∣∣∣
ω=ω(λ,A)

∂ω(λ,A)

∂λ(y′)
= 0.

Therefore,
∂ω(λ,A)

∂λ(y′)
=
−Ψ(y′, A)`(ω(λ,A)|y′)

C(λ,A)
,

where

C(λ,A) =
∂

∂ω

(∫
Ψ(ỹ, A)`(ω|ỹ)λ(ỹ)dỹ

) ∣∣∣∣
ω=ω(λ,A)

. (33)

Next note that P (y, λ,A) = 1− L(ω(λ,A)|y). Therefore,

∂P (y, λ,A)

∂λ(y′)
= −`(ω(λ,A)|y)

∂ω(λ,A)

∂λ(y′)
=
`(ω(λ,A)|y)Ψ(y′, A)`(ω(λ,A)|y′)

C(λ,A)
.

The free entry condition, equation (7), can be rewritten in terms of Ψ as

q(λ,A)

∫
P (ỹ, λ, A)Ψ(ỹ, A)λ(ỹ)dỹ = ρk.

Differentiating with respect to λ,

∂q(λ,A)

∂λ(y′)

ρk

q(λ,A)
+ q(λ,A)

[
P (y′, λ, A)Ψ(y′, A) +

∫
∂P (ỹ, λ, A)

∂λ(y′)
Ψ(ỹ, A)λ(ỹ)dỹ

]
= 0.
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Therefore,

∂q(λ,A)

∂λ(y′)
= −q(λ,A)2

ρk

[
P (y′, λ, A)Ψ(y′, A) +

∫
∂P (ỹ, λ, A)

∂λ(y′)
Ψ(ỹ, A)λ(ỹ)dỹ

]
.

I can substitute for ∂P (ỹ, λ, A)/∂λ(y′) in the second term to get,∫
∂P (ỹ, λ, A)

∂λ(y′)
Ψ(ỹ, A)λ(ỹ)dỹ =

Ψ(y′, A)`(ω(λ,A)|y′)
C(λ,A)

∫
`(ω(λ,A)|ỹ)Ψ(ỹ, A)λ(ỹ)dỹ = 0,

where the second equality follows equation (32). Therefore,

∂q(λ,A)

∂λ(y′)
= − 1

ρk
q(λ,A)2P (y′, λ, A)Ψ(y′, A).

Next note that

p(λ,A) = m
(
q(λ,A)−1

)
.

Therefore,
∂p(λ,A)

∂λ(y′)
=
−m′(q(λ,A)−1)

q(λ,A)2
∂q(λ,A)

∂λ(y′)
=
m′(λ,A)

ρk
P (y′, λ, A)Ψ(y′, A),

where with some abuse of notation I have let m′(λ,A) = m′(q(λ,A)−1). Finally,

∂f(y, λ,A)

∂λ(y′)
= p(λ,A)

∂P (y, λ,A)

∂λ(y′)
+
∂p(λ,A)

∂λ(y′)
P (y, λ,A)

=

[
p(λ,A)

C(λ,A)
`(ω(λ,A)|y)`(ω(λ,A)|y′) +

m′(λ,A)

ρk
P (y, λ,A)P (y′, λ, A)

]
Ψ(y′, A).

B.2 Derivatives with respect toA

Differentiating equation (32) with respect to A,∫
∂Ψ(ỹ, A)

∂A
`(ω(λ,A)|ỹ)λ(ỹ)dỹ +

∂

∂ω

(∫
Ψ(ỹ, A)`(ω|ỹ)λ(ỹ)dỹ

)∣∣∣∣
ω=ω(λ,A)

∂ω(λ,A)

∂A
= 0.

Therefore,
∂ω(λ,A)

∂A
= − 1

C(λ,A)

∫
∂Ψ(ỹ, A)

∂A
`(ω(λ,A)|ỹ)λ(ỹ)dỹ,

where C(λ,A) is defined in equation (33). Next recall that P (y, λ,A) = 1− L(ω(λ,A)|y), so

∂P (y, λ,A)

∂A
= − `(ω(λ,A)|y)

∂ω(λ,A)

∂A

=
`(ω(λ,A)|y)

C(λ,A)

∫
∂Ψ(ỹ, A)

∂A
`(ω(λ,A)|ỹ)λ(ỹ)dỹ.

I next differentiate the free entry condition with respect to A to get

∂q(λ,A)

∂A

ρk

q(λ,A)
+ q(λ,A)

∫ [
∂P (ỹ, λ, A)

∂A
Ψ(ỹ, A) + P (ỹ, λ, A)

∂Ψ(ỹ, A)

∂A

]
λ(ỹ)dỹ = 0.
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Therefore,

∂q(λ,A)

∂A
= −q(λ,A)2

ρk

[∫
∂P (ỹ, λ, A)

∂A
Ψ(ỹ, A)λ(ỹ)dỹ +

∫
P (ỹ, λ, A)

∂Ψ(ỹ, A)

∂A
λ(ỹ)dỹ

]
.

I can substitute for ∂P (ỹ, λ, A)/∂A in the first term in the brackets to get∫
∂P (ỹ, λ, A)

∂A
Ψ(ỹ, A)λ(ỹ)dỹ

=
1

C(λ,A)

(∫
`(ω(λ,A)|ỹ)Ψ(ỹ, A)λ(ỹ)dỹ

)(∫
∂Ψ(ỹ, A)

∂A
`(ω(λ,A)|ỹ)λ(ỹ)dỹ

)
= 0,

where I am using the fact that the first integral is zero by equation (32). So,

∂q(λ,A)

∂A
= −q(λ,A)2

ρk

∫
P (ỹ, λ, A)

∂Ψ(ỹ, A)

∂A
λ(ỹ)dỹ.

Differentiating p(λ,A) = m(q(λ,A)−1) with respect to A, I get

∂p(λ,A)

∂A
=
−m′(q(λ,A)−1)

q(λ,A)2
∂q(λ,A)

∂A

=
m′(λ,A)

ρk

∫
P (ỹ, λ, A)

∂Ψ(ỹ, A)

∂A
λ(ỹ)dỹ,

where m′(λ,A) = m′(q(λ,A)−1). Finally,

∂f(y, λ,A)

∂A
= p(λ,A)

∂P (y, λ,A)

∂A
+
∂p(λ,A)

∂A
P (y, λ,A)

= p(λ,A)
`(ω(λ,A)|y)

C(λ,A)

∫
∂Ψ(ỹ, A)

∂A
`(ω(λ,A)|ỹ)λ(ỹ)dỹ

+ P (y, λ,A)
m′(λ,A)

ρk

∫
P (ỹ, λ, A)

∂Ψ(ỹ, A)

∂A
λ(ỹ)dỹ.

C Robustness Check

In this appendix I modify the model introduced in Section 2 by assuming that the quit rate is procycli-

cal and argue that the predictions of the model are robust to this modification. I do this by simply

assuming that the quit rate is given by a smooth and increasing function ς(A).

It is easy to see how this extension can lead to a locally acyclical separation rate. Let λ∗ denote the

distribution of ability at the steady state equilibrium corresponding to someA∗. Suppose that ς(A) is

such that

ς ′ (A∗) = −δ ∂
∂A

∫
γ (ỹ, A∗)λ∗ (ỹ) dỹ, (34)

where γ(y,A) = 1 − H(Π(y,A)) denotes the probability of a layoff conditional on a machine break-

down.25 Then it is trivially the case that the average separation rate, ς(A) + δ
∫
γ(ỹ, A)λ(ỹ)dỹ, is

independent of A when the economy is close to the steady state equilibrium.

25It is always possible to find a sufficiently small δ and a sufficiently flat ς(A) that come arbitrarily close
to satisfying equation (34)—assuming that the endogenous variables of the model vary continuously with its
parameters. This is due to the fact that equation (34) is satisfied when δ = 0 and ς ′(A) ≡ 0.
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The following proposition shows that the separation rate is log-supermodular in the modified

model—under conditions that are essentially identical to the conditions that give rise to a log-supermodular

separation rate in the baseline model.

Proposition 10. Assume that the quit rate is given by a smooth and increasing function ς(A), the

cost of repair is distributed according to a Pareto distribution, the wage rate is given by w(y,A) =

w0(y) +β(y)A, the flow profit, π(y,A), is strictly supermodular in y andA, and Π(y,A) and its first two

derivatives vary smoothly with δ and ς ′. Given any open interval A ⊂
[
A,A

]
, if the rate of machine

breakdown, δ, the slope of the base wage, |w′0|, and the slope of the quit rate, ς ′, are sufficiently small

and the distribution of the cost of repair has a sufficiently thin tail, then the separation rate, s(y,A), is

strictly log-supermodular in (y,A) over Y ×A.

Proof. The proof is similar to the proof of Proposition 9. The separation rate is log-supermodular if

the following expression is positive:

∂2 log s(y,A)

∂y∂A
=

1

(ς(A) + δγ(y,A))2

[
δ(ς(A) + δγ(y,A))

∂2γ(y,A)

∂y∂A
− δ2∂γ(y,A)

∂y

∂γ(y,A)

∂A
− δ ∂γ(y,A)

∂y

∂ς(A)

∂A

]
.

The assumption that the first two derivatives of Π(y,A) vary smoothly with δ implies that ∂2yAγ(y,A)

is a smooth function of δ. Therefore, by Taylor’s theorem,

∂2

∂y∂A
log s(y,A) =

δ

ς(A)

∂2γ0(y,A)

∂y∂A
− δ

ς2(A)

∂γ0(y,A)

∂y

∂ς(A)

∂A
+R(δ; y,A), (35)

where R is a term that is second order in δ, γ0(y,A) = 1 − H(Π0(y,A)), and Π0 is the limit of Π

as δ → 0. There are two differences between the above expression and the one obtained in the

proof of Proposition 9. First, in the above expression Π0(y,A) is the value of a firm in a model

with a productivity-dependent quit rate, whereas in the proof of Proposition 9 the quit rate was

constant. But the assumption that Π(y,A) varies smoothly with ς ′ implies that, for sufficiently small

values of ς ′, the two are close. Second, the above expression has an additional term. But since

γ0(y,A) is decreasing in y and ς(A) is increasing in A, the additional term is positive. The result

then immediately follows an argument along the lines of the proof of Proposition 9.

Propositions 1–8 only make use of the fact that the value of a firm, Π(y,A), is strictly increasing

in y and A. Whenever ∂Π(y,A)/∂A varies continuously with ς ′ and ς ′ is not too large, Π(y,A) will

continue to be increasing in its arguments in the modified model. Therefore, Propositions 1–8, too,

will continue to hold in the modified model. This observation together with Proposition 10 show that

the predictions of the model are robust to the introduction of a procyclical quit rate.
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